
For the following reaction, the rate of disappearance of ammonia is \[3.6{\text{ }} \times {\text{ }}{10^{ - 3}}{\text{mol/s}}\] . Then what is the rate of formation of water
\[{\text{4N}}{{\text{H}}_3}{\text{ + 5}}{{\text{O}}_2}{\text{ }} \to {\text{ 4NO +
6}}{{\text{H}}_2}{\text{O}}\]
Answer
506.1k+ views
Hint: For the reaction between ammonia and oxygen to form nitric oxide, write an expression for the rate of the reaction. Rearrange the expression to obtain an expression for the rate of formation of water in terms of rate of consumption of ammonia.
\[{\text{rate = }} - \dfrac{1}{4}\dfrac{d}{{dt}}\left[ {{\text{N}}{{\text{H}}_3}} \right]{\text{ = }}\dfrac{1}{6}\dfrac{d}{{dt}}\left[ {{{\text{H}}_2}{\text{O}}} \right]{\text{ = }} - \dfrac{1}{5}\dfrac{d}{{dt}}\left[ {{{\text{O}}_2}} \right]{\text{ = }}\dfrac{1}{4}\dfrac{d}{{dt}}\left[ {{\text{NO}}} \right]\]
Complete Step by step answer: Ammonia reacts with oxygen to form nitric oxide and water. Write the balanced chemical reaction as shown below:
\[{\text{4N}}{{\text{H}}_3}{\text{ + 5}}{{\text{O}}_2}{\text{ }} \to {\text{ 4NO + 6}}{{\text{H}}_2}{\text{O}}\]
Write the expression for the rate of the reaction
\[{\text{rate = }} - \dfrac{1}{4}\dfrac{d}{{dt}}\left[ {{\text{N}}{{\text{H}}_3}} \right]{\text{ = }}\dfrac{1}{6}\dfrac{d}{{dt}}\left[ {{{\text{H}}_2}{\text{O}}} \right]{\text{ = }} - \dfrac{1}{5}\dfrac{d}{{dt}}\left[ {{{\text{O}}_2}} \right]{\text{ = }}\dfrac{1}{4}\dfrac{d}{{dt}}\left[ {{\text{NO}}} \right]\]
In the reaction, ammonia and oxygen are consumed. Hence, you have given negative sign to their rates. On the other hand, nitric oxide and water are formed. Hence, you have given positive signs to their rates.
Rearrange above expression to obtain the rate of formation of water
\[\dfrac{d}{{dt}}\left[ {{{\text{H}}_2}{\text{O}}} \right] = \dfrac{6}{4} \times \left[ { - \dfrac{d}{{dt}}\left[ {{\text{N}}{{\text{H}}_3}} \right]} \right]\]
\[ \Rightarrow \dfrac{d}{{dt}}\left[ {{{\text{H}}_2}{\text{O}}} \right] = \dfrac{3}{2} \times \left[ { - \dfrac{d}{{dt}}\left[ {{\text{N}}{{\text{H}}_3}} \right]} \right]\] … …(1)
The rate of disappearance of ammonia is \[3.6{\text{ }} \times {\text{ }}{10^{ - 3}}{\text{mol/s}}\]
\[ - \dfrac{d}{{dt}}\left[ {{\text{N}}{{\text{H}}_3}} \right] = 3.6{\text{ }} \times {\text{ }}{10^{ - 3}}{\text{mol/s}}\] … …(2)
Substitute equation (2) into equation (1) and solve for the rate of formation of water:
\[
\dfrac{d}{{dt}}\left[ {{{\text{H}}_2}{\text{O}}} \right] = \dfrac{3}{2} \times \left[ { - \dfrac{d}{{dt}}\left[ {{\text{N}}{{\text{H}}_3}} \right]} \right] \\
\Rightarrow \dfrac{d}{{dt}}\left[ {{{\text{H}}_2}{\text{O}}} \right] = \dfrac{3}{2} \times 3.6{\text{ }} \times {\text{ }}{10^{ - 3}}{\text{mol/s}} \\
\Rightarrow \dfrac{d}{{dt}}\left[ {{{\text{H}}_2}{\text{O}}} \right] = 5.4{\text{ }} \times {\text{ }}{10^{ - 3}}{\text{mol/s}} \\
\]
Hence, the rate of formation of water is \[5.4{\text{ }} \times {\text{ }}{10^{ - 3}}{\text{mol/s}}\]
Note: You can define the rate of the reaction as the ratio of the change in the concentration to the time taken for that change. You can consider two types of rates of reaction, the average rate and instantaneous rate. You can apply the average rate over a period of time whereas you can apply the instantaneous rate for a particular time instant.
\[{\text{rate = }} - \dfrac{1}{4}\dfrac{d}{{dt}}\left[ {{\text{N}}{{\text{H}}_3}} \right]{\text{ = }}\dfrac{1}{6}\dfrac{d}{{dt}}\left[ {{{\text{H}}_2}{\text{O}}} \right]{\text{ = }} - \dfrac{1}{5}\dfrac{d}{{dt}}\left[ {{{\text{O}}_2}} \right]{\text{ = }}\dfrac{1}{4}\dfrac{d}{{dt}}\left[ {{\text{NO}}} \right]\]
Complete Step by step answer: Ammonia reacts with oxygen to form nitric oxide and water. Write the balanced chemical reaction as shown below:
\[{\text{4N}}{{\text{H}}_3}{\text{ + 5}}{{\text{O}}_2}{\text{ }} \to {\text{ 4NO + 6}}{{\text{H}}_2}{\text{O}}\]
Write the expression for the rate of the reaction
\[{\text{rate = }} - \dfrac{1}{4}\dfrac{d}{{dt}}\left[ {{\text{N}}{{\text{H}}_3}} \right]{\text{ = }}\dfrac{1}{6}\dfrac{d}{{dt}}\left[ {{{\text{H}}_2}{\text{O}}} \right]{\text{ = }} - \dfrac{1}{5}\dfrac{d}{{dt}}\left[ {{{\text{O}}_2}} \right]{\text{ = }}\dfrac{1}{4}\dfrac{d}{{dt}}\left[ {{\text{NO}}} \right]\]
In the reaction, ammonia and oxygen are consumed. Hence, you have given negative sign to their rates. On the other hand, nitric oxide and water are formed. Hence, you have given positive signs to their rates.
Rearrange above expression to obtain the rate of formation of water
\[\dfrac{d}{{dt}}\left[ {{{\text{H}}_2}{\text{O}}} \right] = \dfrac{6}{4} \times \left[ { - \dfrac{d}{{dt}}\left[ {{\text{N}}{{\text{H}}_3}} \right]} \right]\]
\[ \Rightarrow \dfrac{d}{{dt}}\left[ {{{\text{H}}_2}{\text{O}}} \right] = \dfrac{3}{2} \times \left[ { - \dfrac{d}{{dt}}\left[ {{\text{N}}{{\text{H}}_3}} \right]} \right]\] … …(1)
The rate of disappearance of ammonia is \[3.6{\text{ }} \times {\text{ }}{10^{ - 3}}{\text{mol/s}}\]
\[ - \dfrac{d}{{dt}}\left[ {{\text{N}}{{\text{H}}_3}} \right] = 3.6{\text{ }} \times {\text{ }}{10^{ - 3}}{\text{mol/s}}\] … …(2)
Substitute equation (2) into equation (1) and solve for the rate of formation of water:
\[
\dfrac{d}{{dt}}\left[ {{{\text{H}}_2}{\text{O}}} \right] = \dfrac{3}{2} \times \left[ { - \dfrac{d}{{dt}}\left[ {{\text{N}}{{\text{H}}_3}} \right]} \right] \\
\Rightarrow \dfrac{d}{{dt}}\left[ {{{\text{H}}_2}{\text{O}}} \right] = \dfrac{3}{2} \times 3.6{\text{ }} \times {\text{ }}{10^{ - 3}}{\text{mol/s}} \\
\Rightarrow \dfrac{d}{{dt}}\left[ {{{\text{H}}_2}{\text{O}}} \right] = 5.4{\text{ }} \times {\text{ }}{10^{ - 3}}{\text{mol/s}} \\
\]
Hence, the rate of formation of water is \[5.4{\text{ }} \times {\text{ }}{10^{ - 3}}{\text{mol/s}}\]
Note: You can define the rate of the reaction as the ratio of the change in the concentration to the time taken for that change. You can consider two types of rates of reaction, the average rate and instantaneous rate. You can apply the average rate over a period of time whereas you can apply the instantaneous rate for a particular time instant.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

Explain zero factorial class 11 maths CBSE
