
For complex numbers z and w, prove that ${{\left| z \right|}^{2}}w-{{\left| w \right|}^{2}}z=z-w$, if and only if $z=w\ or\ z\overline{w}=1$.
Answer
585.3k+ views
Hint: We will be using the concept of complex numbers to solve the problem. We will be using the concept that modulus of a complex number ${{\left| z \right|}^{2}}=z\overline{z}$. Also if a complex number is real then $z=\overline{z}$.
Complete step-by-step answer:
Now, we have been given that we have to prove that ${{\left| z \right|}^{2}}w-{{\left| w \right|}^{2}}z=z-w$ if and only if $z=w\ or\ z\overline{w}=1$.
Now, we will take the equation ${{\left| z \right|}^{2}}w-{{\left| w \right|}^{2}}z=z-w$ and prove this is true if and only if $z=w\ or\ z\overline{w}=1$.
So, we have,
${{\left| z \right|}^{2}}w-{{\left| w \right|}^{2}}z=z-w$
On rearranging terms, we have,
$\begin{align}
& {{\left| z \right|}^{2}}w+w={{\left| w \right|}^{2}}z+z \\
& w\left( 1+{{\left| z \right|}^{2}} \right)=z\left( 1+{{\left| w \right|}^{2}} \right) \\
& \dfrac{w}{z}=\dfrac{1+{{\left| w \right|}^{2}}}{1+{{\left| z \right|}^{2}}} \\
\end{align}$
Now, since $\dfrac{1+{{\left| w \right|}^{2}}}{1+{{\left| z \right|}^{2}}}$ is purely real. Therefore, we have,
$\begin{align}
& \left( \dfrac{w}{z} \right)=\left( \dfrac{\overline{w}}{z} \right)=\dfrac{\overline{w}}{z} \\
& \dfrac{w}{z}=\dfrac{\overline{w}}{z} \\
& w\overline{z}=z\overline{w}.......\left( 1 \right) \\
\end{align}$
Now, we again use the equation,
${{\left| z \right|}^{2}}w-{{\left| w \right|}^{2}}z=z-w$
Now, we know that,
$\begin{align}
& {{\left| z \right|}^{2}}=z\overline{z} \\
& {{\left| w \right|}^{2}}=w\overline{w} \\
\end{align}$
So, we will use this in the equation and so we have,
$\begin{align}
& z\overline{z}w-w\overline{w}z=z-w \\
& \overline{z}zw-w\overline{w}z-z+w=0 \\
& \overline{z}zw-z+w-w\overline{w}z=0 \\
\end{align}$
Now, we take z and w as common. So, we have,
$z\left( \overline{z}w-1 \right)-w\left( z\overline{w}-1 \right)=0$
Now, from (1) we have,
$\overline{z}w=z\overline{w}$
So, using this we have,
$\begin{align}
& z\left( z\overline{w}-1 \right)-w\left( z\overline{w}-1 \right)=0 \\
& \left( z-w \right)\left( z\overline{w}-1 \right)=0 \\
& z=w\ or\ z\overline{w}=1 \\
\end{align}$
Hence, we have that,
${{\left| z \right|}^{2}}w-{{\left| w \right|}^{2}}z=z-w$ if and only if $z=w\ or\ z\overline{w}=1$.
Note: To solve these types of questions it is important to remember that if a complex number z is real that $z=\overline{z}$. Also few other identities to be remember like,
${{\left| z \right|}^{2}}=z\overline{z}$
Complete step-by-step answer:
Now, we have been given that we have to prove that ${{\left| z \right|}^{2}}w-{{\left| w \right|}^{2}}z=z-w$ if and only if $z=w\ or\ z\overline{w}=1$.
Now, we will take the equation ${{\left| z \right|}^{2}}w-{{\left| w \right|}^{2}}z=z-w$ and prove this is true if and only if $z=w\ or\ z\overline{w}=1$.
So, we have,
${{\left| z \right|}^{2}}w-{{\left| w \right|}^{2}}z=z-w$
On rearranging terms, we have,
$\begin{align}
& {{\left| z \right|}^{2}}w+w={{\left| w \right|}^{2}}z+z \\
& w\left( 1+{{\left| z \right|}^{2}} \right)=z\left( 1+{{\left| w \right|}^{2}} \right) \\
& \dfrac{w}{z}=\dfrac{1+{{\left| w \right|}^{2}}}{1+{{\left| z \right|}^{2}}} \\
\end{align}$
Now, since $\dfrac{1+{{\left| w \right|}^{2}}}{1+{{\left| z \right|}^{2}}}$ is purely real. Therefore, we have,
$\begin{align}
& \left( \dfrac{w}{z} \right)=\left( \dfrac{\overline{w}}{z} \right)=\dfrac{\overline{w}}{z} \\
& \dfrac{w}{z}=\dfrac{\overline{w}}{z} \\
& w\overline{z}=z\overline{w}.......\left( 1 \right) \\
\end{align}$
Now, we again use the equation,
${{\left| z \right|}^{2}}w-{{\left| w \right|}^{2}}z=z-w$
Now, we know that,
$\begin{align}
& {{\left| z \right|}^{2}}=z\overline{z} \\
& {{\left| w \right|}^{2}}=w\overline{w} \\
\end{align}$
So, we will use this in the equation and so we have,
$\begin{align}
& z\overline{z}w-w\overline{w}z=z-w \\
& \overline{z}zw-w\overline{w}z-z+w=0 \\
& \overline{z}zw-z+w-w\overline{w}z=0 \\
\end{align}$
Now, we take z and w as common. So, we have,
$z\left( \overline{z}w-1 \right)-w\left( z\overline{w}-1 \right)=0$
Now, from (1) we have,
$\overline{z}w=z\overline{w}$
So, using this we have,
$\begin{align}
& z\left( z\overline{w}-1 \right)-w\left( z\overline{w}-1 \right)=0 \\
& \left( z-w \right)\left( z\overline{w}-1 \right)=0 \\
& z=w\ or\ z\overline{w}=1 \\
\end{align}$
Hence, we have that,
${{\left| z \right|}^{2}}w-{{\left| w \right|}^{2}}z=z-w$ if and only if $z=w\ or\ z\overline{w}=1$.
Note: To solve these types of questions it is important to remember that if a complex number z is real that $z=\overline{z}$. Also few other identities to be remember like,
${{\left| z \right|}^{2}}=z\overline{z}$
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

