
For complex numbers z and w, prove that ${{\left| z \right|}^{2}}w-{{\left| w \right|}^{2}}z=z-w$, if and only if $z=w\ or\ z\overline{w}=1$.
Answer
540.6k+ views
Hint: We will be using the concept of complex numbers to solve the problem. We will be using the concept that modulus of a complex number ${{\left| z \right|}^{2}}=z\overline{z}$. Also if a complex number is real then $z=\overline{z}$.
Complete step-by-step answer:
Now, we have been given that we have to prove that ${{\left| z \right|}^{2}}w-{{\left| w \right|}^{2}}z=z-w$ if and only if $z=w\ or\ z\overline{w}=1$.
Now, we will take the equation ${{\left| z \right|}^{2}}w-{{\left| w \right|}^{2}}z=z-w$ and prove this is true if and only if $z=w\ or\ z\overline{w}=1$.
So, we have,
${{\left| z \right|}^{2}}w-{{\left| w \right|}^{2}}z=z-w$
On rearranging terms, we have,
$\begin{align}
& {{\left| z \right|}^{2}}w+w={{\left| w \right|}^{2}}z+z \\
& w\left( 1+{{\left| z \right|}^{2}} \right)=z\left( 1+{{\left| w \right|}^{2}} \right) \\
& \dfrac{w}{z}=\dfrac{1+{{\left| w \right|}^{2}}}{1+{{\left| z \right|}^{2}}} \\
\end{align}$
Now, since $\dfrac{1+{{\left| w \right|}^{2}}}{1+{{\left| z \right|}^{2}}}$ is purely real. Therefore, we have,
$\begin{align}
& \left( \dfrac{w}{z} \right)=\left( \dfrac{\overline{w}}{z} \right)=\dfrac{\overline{w}}{z} \\
& \dfrac{w}{z}=\dfrac{\overline{w}}{z} \\
& w\overline{z}=z\overline{w}.......\left( 1 \right) \\
\end{align}$
Now, we again use the equation,
${{\left| z \right|}^{2}}w-{{\left| w \right|}^{2}}z=z-w$
Now, we know that,
$\begin{align}
& {{\left| z \right|}^{2}}=z\overline{z} \\
& {{\left| w \right|}^{2}}=w\overline{w} \\
\end{align}$
So, we will use this in the equation and so we have,
$\begin{align}
& z\overline{z}w-w\overline{w}z=z-w \\
& \overline{z}zw-w\overline{w}z-z+w=0 \\
& \overline{z}zw-z+w-w\overline{w}z=0 \\
\end{align}$
Now, we take z and w as common. So, we have,
$z\left( \overline{z}w-1 \right)-w\left( z\overline{w}-1 \right)=0$
Now, from (1) we have,
$\overline{z}w=z\overline{w}$
So, using this we have,
$\begin{align}
& z\left( z\overline{w}-1 \right)-w\left( z\overline{w}-1 \right)=0 \\
& \left( z-w \right)\left( z\overline{w}-1 \right)=0 \\
& z=w\ or\ z\overline{w}=1 \\
\end{align}$
Hence, we have that,
${{\left| z \right|}^{2}}w-{{\left| w \right|}^{2}}z=z-w$ if and only if $z=w\ or\ z\overline{w}=1$.
Note: To solve these types of questions it is important to remember that if a complex number z is real that $z=\overline{z}$. Also few other identities to be remember like,
${{\left| z \right|}^{2}}=z\overline{z}$
Complete step-by-step answer:
Now, we have been given that we have to prove that ${{\left| z \right|}^{2}}w-{{\left| w \right|}^{2}}z=z-w$ if and only if $z=w\ or\ z\overline{w}=1$.
Now, we will take the equation ${{\left| z \right|}^{2}}w-{{\left| w \right|}^{2}}z=z-w$ and prove this is true if and only if $z=w\ or\ z\overline{w}=1$.
So, we have,
${{\left| z \right|}^{2}}w-{{\left| w \right|}^{2}}z=z-w$
On rearranging terms, we have,
$\begin{align}
& {{\left| z \right|}^{2}}w+w={{\left| w \right|}^{2}}z+z \\
& w\left( 1+{{\left| z \right|}^{2}} \right)=z\left( 1+{{\left| w \right|}^{2}} \right) \\
& \dfrac{w}{z}=\dfrac{1+{{\left| w \right|}^{2}}}{1+{{\left| z \right|}^{2}}} \\
\end{align}$
Now, since $\dfrac{1+{{\left| w \right|}^{2}}}{1+{{\left| z \right|}^{2}}}$ is purely real. Therefore, we have,
$\begin{align}
& \left( \dfrac{w}{z} \right)=\left( \dfrac{\overline{w}}{z} \right)=\dfrac{\overline{w}}{z} \\
& \dfrac{w}{z}=\dfrac{\overline{w}}{z} \\
& w\overline{z}=z\overline{w}.......\left( 1 \right) \\
\end{align}$
Now, we again use the equation,
${{\left| z \right|}^{2}}w-{{\left| w \right|}^{2}}z=z-w$
Now, we know that,
$\begin{align}
& {{\left| z \right|}^{2}}=z\overline{z} \\
& {{\left| w \right|}^{2}}=w\overline{w} \\
\end{align}$
So, we will use this in the equation and so we have,
$\begin{align}
& z\overline{z}w-w\overline{w}z=z-w \\
& \overline{z}zw-w\overline{w}z-z+w=0 \\
& \overline{z}zw-z+w-w\overline{w}z=0 \\
\end{align}$
Now, we take z and w as common. So, we have,
$z\left( \overline{z}w-1 \right)-w\left( z\overline{w}-1 \right)=0$
Now, from (1) we have,
$\overline{z}w=z\overline{w}$
So, using this we have,
$\begin{align}
& z\left( z\overline{w}-1 \right)-w\left( z\overline{w}-1 \right)=0 \\
& \left( z-w \right)\left( z\overline{w}-1 \right)=0 \\
& z=w\ or\ z\overline{w}=1 \\
\end{align}$
Hence, we have that,
${{\left| z \right|}^{2}}w-{{\left| w \right|}^{2}}z=z-w$ if and only if $z=w\ or\ z\overline{w}=1$.
Note: To solve these types of questions it is important to remember that if a complex number z is real that $z=\overline{z}$. Also few other identities to be remember like,
${{\left| z \right|}^{2}}=z\overline{z}$
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What is the type of food and mode of feeding of the class 11 biology CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

What organs are located on the left side of your body class 11 biology CBSE

How many quintals are there in one metric ton A 10 class 11 physics CBSE

Draw the molecular orbital diagram of N2N2 + N2 Write class 11 chemistry CBSE
