
For any two complex numbers ${z_1},{z_2}$ we have $|{z_1} + {z_2}{|^2} = |{z_1}{|^2} + |{z_2}{|^2}$ then,
A. $\operatorname{Re} \left( {\dfrac{{{z_1}}}{{{z_2}}}} \right) = 0$
B. $\operatorname{Im} \left( {\dfrac{{{z_1}}}{{{z_2}}}} \right) = 0$
C. $\operatorname{Re} ({z_1}{z_2}) = 0$
D. $\operatorname{Im} ({z_1}{z_2}) = 0$
Answer
615.9k+ views
Hint: In order to solve this problem we need to use the formula of ${(a + b)^2} = {a^2} + {b^2} + 2ab$ in the given equation and then make cases and solve to get the answer.
Complete step-by-step answer:
The given equation is $|{z_1} + {z_2}{|^2} = |{z_1}{|^2} + |{z_2}{|^2}$.
We will apply the formula ${(a + b)^2} = {a^2} + {b^2} + 2ab$.
Then the equation $|{z_1} + {z_2}{|^2} = |{z_1}{|^2} + |{z_2}{|^2}$ will become:
$
\Rightarrow |{z_1} + {z_2}{|^2} = |{z_1}{|^2} + |{z_2}{|^2} + 2|{z_1}||{z_2}| = |{z_1}{|^2} + |{z_2}{|^2} \\
\Rightarrow 2{z_1}{z_2} = 0 \\
{\text{Or}} \\
\Rightarrow {z_1}{z_2} = 0 \\
$
For the above any one of the complex number is zero or both of them would be zero (i.e. 0 + 0i)
Case 1 – If ${z_1} = 0 + 0i$ then,
$\operatorname{Re} ({z_1}{z_2}) = 0$, $\operatorname{Im} ({z_1}{z_2}) = 0$, $\operatorname{Re} \left( {\dfrac{{{z_1}}}{{{z_2}}}} \right) = 0$ and $\operatorname{Im} \left( {\dfrac{{{z_1}}}{{{z_2}}}} \right) = 0$.
Case 2 – If ${z_2} = 0 + 0i$ then,
$\operatorname{Re} ({z_1}{z_2}) = 0$, $\operatorname{Im} ({z_1}{z_2}) = 0$
Case 3 – If ${z_1} = {z_2} = 0 + 0i$ then,
$\operatorname{Re} ({z_1}{z_2}) = 0$, $\operatorname{Im} ({z_1}{z_2}) = 0$
Therefore if we consider all the cases since any of it is not mentioned in the question
So, the options A,B,C,D all are answers.
Note: In this problem we have to use the formula we have to use the formula of ${(a + b)^2} = {a^2} + {b^2} + 2ab$ and then we have to make cases. We should have knowledge about what is the real part and imaginary part of a complex number. Since any other information is not provided in the problem. So we need to consider all the conditions. Doing like this you will get the right answer.
Complete step-by-step answer:
The given equation is $|{z_1} + {z_2}{|^2} = |{z_1}{|^2} + |{z_2}{|^2}$.
We will apply the formula ${(a + b)^2} = {a^2} + {b^2} + 2ab$.
Then the equation $|{z_1} + {z_2}{|^2} = |{z_1}{|^2} + |{z_2}{|^2}$ will become:
$
\Rightarrow |{z_1} + {z_2}{|^2} = |{z_1}{|^2} + |{z_2}{|^2} + 2|{z_1}||{z_2}| = |{z_1}{|^2} + |{z_2}{|^2} \\
\Rightarrow 2{z_1}{z_2} = 0 \\
{\text{Or}} \\
\Rightarrow {z_1}{z_2} = 0 \\
$
For the above any one of the complex number is zero or both of them would be zero (i.e. 0 + 0i)
Case 1 – If ${z_1} = 0 + 0i$ then,
$\operatorname{Re} ({z_1}{z_2}) = 0$, $\operatorname{Im} ({z_1}{z_2}) = 0$, $\operatorname{Re} \left( {\dfrac{{{z_1}}}{{{z_2}}}} \right) = 0$ and $\operatorname{Im} \left( {\dfrac{{{z_1}}}{{{z_2}}}} \right) = 0$.
Case 2 – If ${z_2} = 0 + 0i$ then,
$\operatorname{Re} ({z_1}{z_2}) = 0$, $\operatorname{Im} ({z_1}{z_2}) = 0$
Case 3 – If ${z_1} = {z_2} = 0 + 0i$ then,
$\operatorname{Re} ({z_1}{z_2}) = 0$, $\operatorname{Im} ({z_1}{z_2}) = 0$
Therefore if we consider all the cases since any of it is not mentioned in the question
So, the options A,B,C,D all are answers.
Note: In this problem we have to use the formula we have to use the formula of ${(a + b)^2} = {a^2} + {b^2} + 2ab$ and then we have to make cases. We should have knowledge about what is the real part and imaginary part of a complex number. Since any other information is not provided in the problem. So we need to consider all the conditions. Doing like this you will get the right answer.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

