Answer
Verified
466.8k+ views
Hint:If the values of variables $x$ are ${x_1},{x_2},{x_3},.....,{x_n}$, where $'n'$ is the total number of values, then
Arithmetic mean $\left( {\overline x } \right)$
$\begin{gathered}
= \dfrac{{{x_1} + {x_2} + {x_3} + ..... + {x_n}}}{n} = \dfrac{1}{n}\sum\limits_{i = 1}^{i = n} {{x_i}} \\
\\
\end{gathered} $
The symbol $\sum\limits_{i = 1}^{i = n} {{x_i}} $, denotes the sum ${x_1} + {x_2} + {x_3} + ..... + {x_n}.$
The arithmetic mean of a set of observations is equal to their sum divided by the total number of observations.
Complete step-by-step answer:
Let the total number of observations are ‘n’ and given, the mean of observation be $'x'$.
Then,
$\begin{gathered}
\dfrac{{{x_1} + {x_2} + {x_3} + ..... + {x_n}}}{n} = x \\
\Rightarrow {x_1} + {x_2} + {x_3} + ..... + {x_n} = nx........(i) \\
\end{gathered} $
Then,
$\begin{gathered}
\sum {\left( {x - \overline x } \right)} = \left[ {\left( {{x_1} - x} \right) + \left( {{x_2} - x} \right) + \left( {{x_3} - x} \right) + ...... + \left( {{x_n} - x} \right)} \right] \\
{\text{ = }}\left[ {\left( {{x_1} + {x_1} + {x_1} + ...... + {x_1}} \right) - \left( {x + x + x + .....n{\text{ times}}} \right)} \right] \\
\end{gathered} $
Since, from $\left( i \right)$ above, we have
${x_1} + {x_2} + {x_3} + ..... + {x_n} = nx$ and $x + x + x + ....... + x = nx$
Therefore,
$\sum {\left( {x - \overline x } \right)} = nx - nx = 0$
So, the correct answer is “Option D”.
Note:The arithmetic mean of a set of observations is equal to their sum divided by the total number of observations.
$\begin{gathered}
\dfrac{{{x_1} + {x_2} + {x_3} + ..... + {x_n}}}{n} = x \\
\Rightarrow {x_1} + {x_2} + {x_3} + ..... + {x_n} = nx \\
\end{gathered} $
And also,
$x + x + x + ....... + x = nx$.
Arithmetic mean $\left( {\overline x } \right)$
$\begin{gathered}
= \dfrac{{{x_1} + {x_2} + {x_3} + ..... + {x_n}}}{n} = \dfrac{1}{n}\sum\limits_{i = 1}^{i = n} {{x_i}} \\
\\
\end{gathered} $
The symbol $\sum\limits_{i = 1}^{i = n} {{x_i}} $, denotes the sum ${x_1} + {x_2} + {x_3} + ..... + {x_n}.$
The arithmetic mean of a set of observations is equal to their sum divided by the total number of observations.
Complete step-by-step answer:
Let the total number of observations are ‘n’ and given, the mean of observation be $'x'$.
Then,
$\begin{gathered}
\dfrac{{{x_1} + {x_2} + {x_3} + ..... + {x_n}}}{n} = x \\
\Rightarrow {x_1} + {x_2} + {x_3} + ..... + {x_n} = nx........(i) \\
\end{gathered} $
Then,
$\begin{gathered}
\sum {\left( {x - \overline x } \right)} = \left[ {\left( {{x_1} - x} \right) + \left( {{x_2} - x} \right) + \left( {{x_3} - x} \right) + ...... + \left( {{x_n} - x} \right)} \right] \\
{\text{ = }}\left[ {\left( {{x_1} + {x_1} + {x_1} + ...... + {x_1}} \right) - \left( {x + x + x + .....n{\text{ times}}} \right)} \right] \\
\end{gathered} $
Since, from $\left( i \right)$ above, we have
${x_1} + {x_2} + {x_3} + ..... + {x_n} = nx$ and $x + x + x + ....... + x = nx$
Therefore,
$\sum {\left( {x - \overline x } \right)} = nx - nx = 0$
So, the correct answer is “Option D”.
Note:The arithmetic mean of a set of observations is equal to their sum divided by the total number of observations.
$\begin{gathered}
\dfrac{{{x_1} + {x_2} + {x_3} + ..... + {x_n}}}{n} = x \\
\Rightarrow {x_1} + {x_2} + {x_3} + ..... + {x_n} = nx \\
\end{gathered} $
And also,
$x + x + x + ....... + x = nx$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it