
For all the numbers a and b, let $a\odot b$ be defined by $a\odot b=ab+a+b$. Then for the numbers x, y and z, which of the following is/are true?
(i) $x\odot y=y\odot x$
(ii) $\left( x-1 \right)\odot \left( x+1 \right)=\left( x\odot x \right)-1$
(iii) $x\odot \left( y+z \right)=\left( x\odot y \right)+\left( x\odot z \right)$
Answer
588.9k+ views
Hint: The definition of the special operator for any two numbers a and b is given to us. To verify which of the given statements are true, we need to take each statement and define the operator on both the sides of the equal to sign. If the left hand side is equal to the right hand side, the statement is true. If they are not equal, the statement is false.
Complete step-by-step answer:
It is given to us that for any two numbers a and b, $a\odot b$ is defined as $a\odot b=ab+a+b$.
The first statement given to us is $x\odot y=y\odot x$
First of all, we will define the left hand side.
$\Rightarrow x\odot y$ = xy + x + y
Now, let us see the right hand side.
$\Rightarrow y\odot x$ = yx + y + x
$\Rightarrow y\odot x$ = xy + x + y
But we already defined that $x\odot y$ = xy + x + y.
$\Rightarrow x\odot y=y\odot x$
Therefore, the given statement is true.
The second statement given to us is $\left( x-1 \right)\odot \left( x+1 \right)=\left( x\odot x \right)-1$
First of all, we will define the left hand side.
$\Rightarrow \left( x-1 \right)\odot \left( x+1 \right)$ = (x – 1)(x + 1) + (x – 1) + (x + 1)
We will apply the rule $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$.
$\Rightarrow \left( x-1 \right)\odot \left( x+1 \right)={{x}^{2}}+2x-1$
Now, we shall proceed to the right hand side.
$\begin{align}
& \Rightarrow \left( x\odot x \right)-1=x\times x+x+x-1 \\
& \Rightarrow \left( x\odot x \right)-1={{x}^{2}}+2x-1 \\
\end{align}$
But we already proved that $\left( x-1 \right)\odot \left( x+1 \right)={{x}^{2}}+2x-1$.
$\Rightarrow \left( x-1 \right)\odot \left( x+1 \right)=\left( x\odot x \right)-1$
Therefore, the given statement is true.
The third statement given to us is $x\odot \left( y+z \right)=\left( x\odot y \right)+\left( x\odot z \right)$
First of all, we will define the left hand side.
$\Rightarrow x\odot \left( y+z \right)$ = x(y + z) + x + (y + z)
$\Rightarrow x\odot \left( y+z \right)$ = xy + xz + x + y + z
Now, we shall proceed to the right hand side.
$\Rightarrow \left( x\odot y \right)+\left( x\odot z \right)$ = xy + x + y + xz + x + z
$\Rightarrow \left( x\odot y \right)+\left( x\odot z \right)$ = xy + xz + 2x + y + z
Since the left hand side is not equal to the right hand side, the given statement is not true.
Hence, statements (i) and (ii) are true and statement (iii) is not true.
Note: Another way to solve this question is to take some arbitrary value for x, y and z and then verify whether the left hand side is equal to the right hand side or not.
Complete step-by-step answer:
It is given to us that for any two numbers a and b, $a\odot b$ is defined as $a\odot b=ab+a+b$.
The first statement given to us is $x\odot y=y\odot x$
First of all, we will define the left hand side.
$\Rightarrow x\odot y$ = xy + x + y
Now, let us see the right hand side.
$\Rightarrow y\odot x$ = yx + y + x
$\Rightarrow y\odot x$ = xy + x + y
But we already defined that $x\odot y$ = xy + x + y.
$\Rightarrow x\odot y=y\odot x$
Therefore, the given statement is true.
The second statement given to us is $\left( x-1 \right)\odot \left( x+1 \right)=\left( x\odot x \right)-1$
First of all, we will define the left hand side.
$\Rightarrow \left( x-1 \right)\odot \left( x+1 \right)$ = (x – 1)(x + 1) + (x – 1) + (x + 1)
We will apply the rule $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$.
$\Rightarrow \left( x-1 \right)\odot \left( x+1 \right)={{x}^{2}}+2x-1$
Now, we shall proceed to the right hand side.
$\begin{align}
& \Rightarrow \left( x\odot x \right)-1=x\times x+x+x-1 \\
& \Rightarrow \left( x\odot x \right)-1={{x}^{2}}+2x-1 \\
\end{align}$
But we already proved that $\left( x-1 \right)\odot \left( x+1 \right)={{x}^{2}}+2x-1$.
$\Rightarrow \left( x-1 \right)\odot \left( x+1 \right)=\left( x\odot x \right)-1$
Therefore, the given statement is true.
The third statement given to us is $x\odot \left( y+z \right)=\left( x\odot y \right)+\left( x\odot z \right)$
First of all, we will define the left hand side.
$\Rightarrow x\odot \left( y+z \right)$ = x(y + z) + x + (y + z)
$\Rightarrow x\odot \left( y+z \right)$ = xy + xz + x + y + z
Now, we shall proceed to the right hand side.
$\Rightarrow \left( x\odot y \right)+\left( x\odot z \right)$ = xy + x + y + xz + x + z
$\Rightarrow \left( x\odot y \right)+\left( x\odot z \right)$ = xy + xz + 2x + y + z
Since the left hand side is not equal to the right hand side, the given statement is not true.
Hence, statements (i) and (ii) are true and statement (iii) is not true.
Note: Another way to solve this question is to take some arbitrary value for x, y and z and then verify whether the left hand side is equal to the right hand side or not.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

