
For a sequence $\left\{ {{a_n}} \right\},{\text{ }}{a_1} = 2{\text{ and }}\dfrac{{{a_{n + 1}}}}{{{a_n}}} = \dfrac{1}{3}{\text{ , then }}\sum\limits_{r = 1}^{20} {{a_r}} {\text{ is}}$ ;
$\left( 1 \right)\left( {\dfrac{{20}}{2}} \right)\left( {4 + 19 \times 3} \right)$
$\left( 2 \right)3\left( {1 - \dfrac{1}{{{3^{20}}}}} \right)$
$\left( 3 \right)2\left( {1 - {3^{20}}} \right)$
$\left( 4 \right)$ None of these
Answer
408.9k+ views
Hint: To solve this question we must be familiar with the basic concept of geometric progression. A geometric progression is a sequence in which each next term is generated by multiplying the previous term with a constant value. General representation of a geometric sequence is $\left\{ {a,ar,a{r^2},a{r^3},.....} \right\}$ where $a$ is the first term of the sequence and $r$ is called the common ratio between the terms $\left( {r = \dfrac{{{\text{First term}}}}{{{\text{Second term}}}}} \right)$ . Example of a geometric progression: $4,8,16,32,64$ is in G.P. having a common ratio of $2$ .
Complete step by step solution:
The first term of the sequence is ;
$ \Rightarrow {a_1} = 2$
$ \Rightarrow \dfrac{{{a_{n + 1}}}}{{{a_n}}} = \dfrac{1}{3}$ ( common ratio )
Which means on rearranging we can say; ${a_{n + 1}} = \dfrac{{{a_n}}}{3}{\text{ }}......\left( 1 \right)$
This series is in geometric progression with common ratio $r = \dfrac{1}{3}$ and ${a_1} = 2$ ;
Therefore, we can calculate successive or preceding terms as;
Put the value of $n = 1$ , in equation $\left( 1 \right)$ ;
$ \Rightarrow {a_2} = \dfrac{{{a_1}}}{3} = \dfrac{2}{3}$
Put the value of $n = 2$ , in equation $\left( 1 \right)$ ;
$ \Rightarrow {a_3} = \dfrac{{{a_2}}}{3} = \dfrac{2}{3}\left( {\dfrac{1}{3}} \right)$
Put the value of $n = 3$ , in equation $\left( 1 \right)$ ;
$ \Rightarrow {a_4} = \dfrac{{{a_3}}}{3} = \dfrac{2}{3}{\left( {\dfrac{1}{3}} \right)^2}$
Put the value of $n = 4$ , in equation $\left( 1 \right)$ ;
$ \Rightarrow {a_5} = \dfrac{{{a_4}}}{3} = \dfrac{2}{3}{\left( {\dfrac{1}{3}} \right)^3}$
We notice the pattern is ${a_r} = \dfrac{2}{3}{\left( {\dfrac{1}{3}} \right)^{r - 2}}$ ;
Therefore, the geometric progression can be written as ( Since we have to calculate the first $20$ terms) ;
$ \Rightarrow {a_1} + {a_2} + {a_3} + {a_4} + ........... + {a_{20}} = 2 + \dfrac{2}{3} + \dfrac{2}{3}\left( {\dfrac{1}{3}} \right) + \dfrac{2}{3}\left( {\dfrac{1}{{{3^2}}}} \right) + ........ + \dfrac{2}{3}\left( {\dfrac{1}{{{3^{18}}}}} \right)$
The above geometric progression can also be as;
$ \Rightarrow 2 + \dfrac{2}{3}\left[ {1 + \dfrac{1}{3} + {{\left( {\dfrac{1}{3}} \right)}^2} + {{\left( {\dfrac{1}{3}} \right)}^3} + .....{{\left( {\dfrac{1}{3}} \right)}^{18}}} \right]$
$ \Rightarrow \sum\limits_{r = 1}^{20} {{a_r}} = {S_{20}}$
We know that for a geometric progression $a + ar + a{r^2} + a{r^3} + a{r^n}$ , the formula of sum of n-terms of G.P. is given by;
$ \Rightarrow {S_n} = a\left[ {\dfrac{{\left( {{r^n} - 1} \right)}}{{r - 1}}} \right]{\text{ if }}r \ne 1{\text{ and }}r \succ 1{\text{ }}......\left( 2 \right)$
$ \Rightarrow {S_n} = a\left[ {\dfrac{{\left( {1 - {r^n}} \right)}}{{1 - r}}} \right]{\text{ if }}r \ne 1{\text{ and }}r \prec 1{\text{ }}......\left( 3 \right)$
Since, $r = \dfrac{1}{3}$ here means $r \prec 1$ ; therefore we will use the formula specified in equation $\left( 3 \right)$ ;
$ \Rightarrow \sum\limits_{r = 1}^{20} {{a_r}} = \dfrac{{{a_1}\left( {1 - {r^{20}}} \right)}}{{1 - r}}$
$ \Rightarrow \sum\limits_{r = 1}^{20} {{a_r}} = \dfrac{{2\left( {1 - {{\left( {\dfrac{1}{3}} \right)}^{20}}} \right)}}{{1 - \dfrac{1}{3}}}$
Simplifying the above expression, we get;
$ \Rightarrow \sum\limits_{r = 1}^{20} {{a_r}} = \dfrac{{2\left( {1 - \dfrac{1}{{{3^{20}}}}} \right)}}{{\dfrac{2}{3}}}$
On further simplification;
$ \Rightarrow \sum\limits_{r = 1}^{20} {{a_r}} = 3\left[ {1 - \dfrac{1}{{{3^{20}}}}} \right]$
Therefore, the correct answer for this question is option $\left( 2 \right)$.
Note:
The ${n^{th}}$ term of a G.P. is given by ${a_n} = a{r^{n - 1}}$ ( the first term of a G.P. is $a$ which equals $a{r^0}$) . A geometric series can be finite or infinite . We have discussed the formula to calculate the sum of finite geometric series above. The sum of infinite geometric series is given by $\sum\limits_{n = 0}^\infty {\left( {a{r^n}} \right)} = a\left( {\dfrac{1}{{1 - r}}} \right)$ such that $0 \prec r \prec 1$ .
Complete step by step solution:
The first term of the sequence is ;
$ \Rightarrow {a_1} = 2$
$ \Rightarrow \dfrac{{{a_{n + 1}}}}{{{a_n}}} = \dfrac{1}{3}$ ( common ratio )
Which means on rearranging we can say; ${a_{n + 1}} = \dfrac{{{a_n}}}{3}{\text{ }}......\left( 1 \right)$
This series is in geometric progression with common ratio $r = \dfrac{1}{3}$ and ${a_1} = 2$ ;
Therefore, we can calculate successive or preceding terms as;
Put the value of $n = 1$ , in equation $\left( 1 \right)$ ;
$ \Rightarrow {a_2} = \dfrac{{{a_1}}}{3} = \dfrac{2}{3}$
Put the value of $n = 2$ , in equation $\left( 1 \right)$ ;
$ \Rightarrow {a_3} = \dfrac{{{a_2}}}{3} = \dfrac{2}{3}\left( {\dfrac{1}{3}} \right)$
Put the value of $n = 3$ , in equation $\left( 1 \right)$ ;
$ \Rightarrow {a_4} = \dfrac{{{a_3}}}{3} = \dfrac{2}{3}{\left( {\dfrac{1}{3}} \right)^2}$
Put the value of $n = 4$ , in equation $\left( 1 \right)$ ;
$ \Rightarrow {a_5} = \dfrac{{{a_4}}}{3} = \dfrac{2}{3}{\left( {\dfrac{1}{3}} \right)^3}$
We notice the pattern is ${a_r} = \dfrac{2}{3}{\left( {\dfrac{1}{3}} \right)^{r - 2}}$ ;
Therefore, the geometric progression can be written as ( Since we have to calculate the first $20$ terms) ;
$ \Rightarrow {a_1} + {a_2} + {a_3} + {a_4} + ........... + {a_{20}} = 2 + \dfrac{2}{3} + \dfrac{2}{3}\left( {\dfrac{1}{3}} \right) + \dfrac{2}{3}\left( {\dfrac{1}{{{3^2}}}} \right) + ........ + \dfrac{2}{3}\left( {\dfrac{1}{{{3^{18}}}}} \right)$
The above geometric progression can also be as;
$ \Rightarrow 2 + \dfrac{2}{3}\left[ {1 + \dfrac{1}{3} + {{\left( {\dfrac{1}{3}} \right)}^2} + {{\left( {\dfrac{1}{3}} \right)}^3} + .....{{\left( {\dfrac{1}{3}} \right)}^{18}}} \right]$
$ \Rightarrow \sum\limits_{r = 1}^{20} {{a_r}} = {S_{20}}$
We know that for a geometric progression $a + ar + a{r^2} + a{r^3} + a{r^n}$ , the formula of sum of n-terms of G.P. is given by;
$ \Rightarrow {S_n} = a\left[ {\dfrac{{\left( {{r^n} - 1} \right)}}{{r - 1}}} \right]{\text{ if }}r \ne 1{\text{ and }}r \succ 1{\text{ }}......\left( 2 \right)$
$ \Rightarrow {S_n} = a\left[ {\dfrac{{\left( {1 - {r^n}} \right)}}{{1 - r}}} \right]{\text{ if }}r \ne 1{\text{ and }}r \prec 1{\text{ }}......\left( 3 \right)$
Since, $r = \dfrac{1}{3}$ here means $r \prec 1$ ; therefore we will use the formula specified in equation $\left( 3 \right)$ ;
$ \Rightarrow \sum\limits_{r = 1}^{20} {{a_r}} = \dfrac{{{a_1}\left( {1 - {r^{20}}} \right)}}{{1 - r}}$
$ \Rightarrow \sum\limits_{r = 1}^{20} {{a_r}} = \dfrac{{2\left( {1 - {{\left( {\dfrac{1}{3}} \right)}^{20}}} \right)}}{{1 - \dfrac{1}{3}}}$
Simplifying the above expression, we get;
$ \Rightarrow \sum\limits_{r = 1}^{20} {{a_r}} = \dfrac{{2\left( {1 - \dfrac{1}{{{3^{20}}}}} \right)}}{{\dfrac{2}{3}}}$
On further simplification;
$ \Rightarrow \sum\limits_{r = 1}^{20} {{a_r}} = 3\left[ {1 - \dfrac{1}{{{3^{20}}}}} \right]$
Therefore, the correct answer for this question is option $\left( 2 \right)$.
Note:
The ${n^{th}}$ term of a G.P. is given by ${a_n} = a{r^{n - 1}}$ ( the first term of a G.P. is $a$ which equals $a{r^0}$) . A geometric series can be finite or infinite . We have discussed the formula to calculate the sum of finite geometric series above. The sum of infinite geometric series is given by $\sum\limits_{n = 0}^\infty {\left( {a{r^n}} \right)} = a\left( {\dfrac{1}{{1 - r}}} \right)$ such that $0 \prec r \prec 1$ .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
