
For a sequence if $ {{S}_{n}}=\dfrac{{{4}^{n}}-{{3}^{n}}}{{{3}^{n}}} $ find the $ {{n}^{th}} $ term, hence show that if it is a G.P.
Answer
569.4k+ views
Hint: In the problem, we have the value of sum of the $ n $ terms in a series. Now we will simplify the given value and calculate the value of the sum of $ n-1 $ terms from the value of $ {{S}_{n}} $. The value of $ {{n}^{th}} $ can be calculated by subtracting the sum of $ n-1 $ terms from the sum of $ n $ terms. After finding the $ {{n}^{th}} $ term, we will calculate the first, second, third terms of the series by using the value of $ {{n}^{th}} $ term. We will calculate the ratio of first, second term, and the ratio of a second and third term. From these ratios, we can say that the given series is in G.P or not.
Complete step by step answer:
Given that,
$ {{S}_{n}}=\dfrac{{{4}^{n}}-{{3}^{n}}}{{{3}^{n}}} $
Dividing each term in numerator with the denominator, then we will get
$ \Rightarrow {{S}_{n}}=\dfrac{{{4}^{n}}}{{{3}^{n}}}-\dfrac{{{3}^{n}}}{{{3}^{n}}} $
We know that $ \left( \dfrac{{{a}^{m}}}{{{b}^{m}}} \right)={{\left( \dfrac{a}{b} \right)}^{m}} $ , then we will have
$ \Rightarrow {{S}_{n}}={{\left( \dfrac{4}{3} \right)}^{n}}-1 $
From the value of $ {{S}_{n}} $ , the sum of $ n-1 $ terms can be given as
$ {{S}_{n-1}}={{\left( \dfrac{4}{3} \right)}^{n-1}}-1 $
We know that the $ {{n}^{th}} $ term is equal to the difference between the sum of $ n $ terms and the sum of $ n-1 $ terms. Mathematically
$ \begin{align}
& {{T}_{n}}={{S}_{n}}-{{S}_{n-1}} \\
& \Rightarrow {{T}_{n}}=\left[ {{\left( \dfrac{4}{3} \right)}^{n}}-1 \right]-\left[ {{\left( \dfrac{4}{3} \right)}^{n-1}}-1 \right] \\
& \Rightarrow {{T}_{n}}={{\left( \dfrac{4}{3} \right)}^{n}}-1-{{\left( \dfrac{4}{3} \right)}^{n-1}}+1 \\
\end{align} $
We can write $ {{a}^{m}}={{a}^{m-1}}.a $ , then we will get
$ {{T}_{n}}={{\left( \dfrac{4}{3} \right)}^{n-1}}.\left( \dfrac{4}{3} \right)-{{\left( \dfrac{4}{3} \right)}^{n-1}} $
Taking $ {{\left( \dfrac{4}{3} \right)}^{n-1}} $ as common in the above equation, then we will get
$ \begin{align}
& {{T}_{n}}={{\left( \dfrac{4}{3} \right)}^{n-1}}\left[ \dfrac{4}{3}-1 \right] \\
& \Rightarrow {{T}_{n}}={{\left( \dfrac{4}{3} \right)}^{n-1}}\left[ \dfrac{4-3}{3} \right] \\
& \Rightarrow {{T}_{n}}=\dfrac{1}{3}{{\left( \dfrac{4}{3} \right)}^{n-1}} \\
\end{align} $
Multiplying and dividing with $ 4 $ , then we will get
$ \begin{align}
& {{T}_{n}}=\dfrac{1}{4}.\dfrac{4}{3}{{\left( \dfrac{4}{3} \right)}^{n-1}} \\
& \Rightarrow {{T}_{n}}=\dfrac{1}{4}{{\left( \dfrac{4}{3} \right)}^{n-1+1}} \\
& \Rightarrow {{T}_{n}}=\dfrac{1}{4}{{\left( \dfrac{4}{3} \right)}^{n}} \\
\end{align} $
Now we have the value of $ {{n}^{th}} $ term of the given series. Now the first, second, third terms of the series are
First term is $ {{T}_{1}}=\dfrac{1}{4}{{\left( \dfrac{4}{3} \right)}^{1}}=\dfrac{1}{3} $ .
Second term is $ {{T}_{2}}=\dfrac{1}{4}{{\left( \dfrac{4}{3} \right)}^{2}}=\dfrac{4}{9} $ .
Third term is $ {{T}_{3}}=\dfrac{1}{4}{{\left( \dfrac{4}{3} \right)}^{3}}=\dfrac{16}{27} $ .
Now the ratio of second and first term is $ \dfrac{{{T}_{2}}}{{{T}_{1}}}=\dfrac{\dfrac{4}{9}}{\dfrac{1}{3}}=\dfrac{4}{3} $
Now the ratio of third and second term is $ \dfrac{{{T}_{3}}}{{{T}_{2}}}=\dfrac{\dfrac{16}{27}}{\dfrac{4}{9}}=\dfrac{4}{3} $
Here we got the ratio of successive terms as equal. When the ratio of the successive terms is equal in a series, then we will call that series as G.P.
So, the given series is in G.P with common ratio $ r=\dfrac{4}{3} $ .
Note:
We can also solve this problem in another manner. Once we calculated the $ {{n}^{th}} $ term, to show the series in G.P we will modify the given $ {{S}_{n}} $ value and convert it in the form such that the sum of $ n $ terms in G.P i.e. $ S=\dfrac{a\left( {{r}^{n}}-1 \right)}{\left( r-1 \right)} $ .
Given $ {{S}_{n}}=\dfrac{{{4}^{n}}-{{3}^{n}}}{{{3}^{n}}} $
$ \Rightarrow {{S}_{n}}=\dfrac{{{4}^{n}}}{{{3}^{n}}}-\dfrac{{{3}^{n}}}{{{3}^{n}}} $
$ \Rightarrow {{S}_{n}}={{\left( \dfrac{4}{3} \right)}^{n}}-1 $
Dividing and multiplying with $ 3 $ , then we will get\
$ \begin{align}
& \Rightarrow {{S}_{n}}=\dfrac{3}{3}{{\left( \dfrac{4}{3} \right)}^{n}}-1 \\
& \Rightarrow {{S}_{n}}=\dfrac{\dfrac{1}{3}\left[ {{\left( \dfrac{4}{3} \right)}^{n}}-1 \right]}{\dfrac{1}{3}} \\
\end{align} $
Adding and subtracting $ 1 $ in denominator, then we will get
$ \begin{align}
& \Rightarrow {{S}_{n}}=\dfrac{\dfrac{1}{3}\left[ {{\left( \dfrac{4}{3} \right)}^{n}}-1 \right]}{\dfrac{1}{3}+1-1} \\
& \Rightarrow {{S}_{n}}=\dfrac{\dfrac{1}{3}\left[ {{\left( \dfrac{4}{3} \right)}^{n}}-1 \right]}{\dfrac{1+1\times 3}{3}-1} \\
& \Rightarrow {{S}_{n}}=\dfrac{\dfrac{1}{3}\left[ {{\left( \dfrac{4}{3} \right)}^{n}}-1 \right]}{\left( \dfrac{4}{3}-1 \right)} \\
\end{align} $
The above is in the form of $ S=\dfrac{a\left( {{r}^{n}}-1 \right)}{\left( r-1 \right)} $ with $ r=\dfrac{4}{3} $ .
Hence the series in G.P.
Complete step by step answer:
Given that,
$ {{S}_{n}}=\dfrac{{{4}^{n}}-{{3}^{n}}}{{{3}^{n}}} $
Dividing each term in numerator with the denominator, then we will get
$ \Rightarrow {{S}_{n}}=\dfrac{{{4}^{n}}}{{{3}^{n}}}-\dfrac{{{3}^{n}}}{{{3}^{n}}} $
We know that $ \left( \dfrac{{{a}^{m}}}{{{b}^{m}}} \right)={{\left( \dfrac{a}{b} \right)}^{m}} $ , then we will have
$ \Rightarrow {{S}_{n}}={{\left( \dfrac{4}{3} \right)}^{n}}-1 $
From the value of $ {{S}_{n}} $ , the sum of $ n-1 $ terms can be given as
$ {{S}_{n-1}}={{\left( \dfrac{4}{3} \right)}^{n-1}}-1 $
We know that the $ {{n}^{th}} $ term is equal to the difference between the sum of $ n $ terms and the sum of $ n-1 $ terms. Mathematically
$ \begin{align}
& {{T}_{n}}={{S}_{n}}-{{S}_{n-1}} \\
& \Rightarrow {{T}_{n}}=\left[ {{\left( \dfrac{4}{3} \right)}^{n}}-1 \right]-\left[ {{\left( \dfrac{4}{3} \right)}^{n-1}}-1 \right] \\
& \Rightarrow {{T}_{n}}={{\left( \dfrac{4}{3} \right)}^{n}}-1-{{\left( \dfrac{4}{3} \right)}^{n-1}}+1 \\
\end{align} $
We can write $ {{a}^{m}}={{a}^{m-1}}.a $ , then we will get
$ {{T}_{n}}={{\left( \dfrac{4}{3} \right)}^{n-1}}.\left( \dfrac{4}{3} \right)-{{\left( \dfrac{4}{3} \right)}^{n-1}} $
Taking $ {{\left( \dfrac{4}{3} \right)}^{n-1}} $ as common in the above equation, then we will get
$ \begin{align}
& {{T}_{n}}={{\left( \dfrac{4}{3} \right)}^{n-1}}\left[ \dfrac{4}{3}-1 \right] \\
& \Rightarrow {{T}_{n}}={{\left( \dfrac{4}{3} \right)}^{n-1}}\left[ \dfrac{4-3}{3} \right] \\
& \Rightarrow {{T}_{n}}=\dfrac{1}{3}{{\left( \dfrac{4}{3} \right)}^{n-1}} \\
\end{align} $
Multiplying and dividing with $ 4 $ , then we will get
$ \begin{align}
& {{T}_{n}}=\dfrac{1}{4}.\dfrac{4}{3}{{\left( \dfrac{4}{3} \right)}^{n-1}} \\
& \Rightarrow {{T}_{n}}=\dfrac{1}{4}{{\left( \dfrac{4}{3} \right)}^{n-1+1}} \\
& \Rightarrow {{T}_{n}}=\dfrac{1}{4}{{\left( \dfrac{4}{3} \right)}^{n}} \\
\end{align} $
Now we have the value of $ {{n}^{th}} $ term of the given series. Now the first, second, third terms of the series are
First term is $ {{T}_{1}}=\dfrac{1}{4}{{\left( \dfrac{4}{3} \right)}^{1}}=\dfrac{1}{3} $ .
Second term is $ {{T}_{2}}=\dfrac{1}{4}{{\left( \dfrac{4}{3} \right)}^{2}}=\dfrac{4}{9} $ .
Third term is $ {{T}_{3}}=\dfrac{1}{4}{{\left( \dfrac{4}{3} \right)}^{3}}=\dfrac{16}{27} $ .
Now the ratio of second and first term is $ \dfrac{{{T}_{2}}}{{{T}_{1}}}=\dfrac{\dfrac{4}{9}}{\dfrac{1}{3}}=\dfrac{4}{3} $
Now the ratio of third and second term is $ \dfrac{{{T}_{3}}}{{{T}_{2}}}=\dfrac{\dfrac{16}{27}}{\dfrac{4}{9}}=\dfrac{4}{3} $
Here we got the ratio of successive terms as equal. When the ratio of the successive terms is equal in a series, then we will call that series as G.P.
So, the given series is in G.P with common ratio $ r=\dfrac{4}{3} $ .
Note:
We can also solve this problem in another manner. Once we calculated the $ {{n}^{th}} $ term, to show the series in G.P we will modify the given $ {{S}_{n}} $ value and convert it in the form such that the sum of $ n $ terms in G.P i.e. $ S=\dfrac{a\left( {{r}^{n}}-1 \right)}{\left( r-1 \right)} $ .
Given $ {{S}_{n}}=\dfrac{{{4}^{n}}-{{3}^{n}}}{{{3}^{n}}} $
$ \Rightarrow {{S}_{n}}=\dfrac{{{4}^{n}}}{{{3}^{n}}}-\dfrac{{{3}^{n}}}{{{3}^{n}}} $
$ \Rightarrow {{S}_{n}}={{\left( \dfrac{4}{3} \right)}^{n}}-1 $
Dividing and multiplying with $ 3 $ , then we will get\
$ \begin{align}
& \Rightarrow {{S}_{n}}=\dfrac{3}{3}{{\left( \dfrac{4}{3} \right)}^{n}}-1 \\
& \Rightarrow {{S}_{n}}=\dfrac{\dfrac{1}{3}\left[ {{\left( \dfrac{4}{3} \right)}^{n}}-1 \right]}{\dfrac{1}{3}} \\
\end{align} $
Adding and subtracting $ 1 $ in denominator, then we will get
$ \begin{align}
& \Rightarrow {{S}_{n}}=\dfrac{\dfrac{1}{3}\left[ {{\left( \dfrac{4}{3} \right)}^{n}}-1 \right]}{\dfrac{1}{3}+1-1} \\
& \Rightarrow {{S}_{n}}=\dfrac{\dfrac{1}{3}\left[ {{\left( \dfrac{4}{3} \right)}^{n}}-1 \right]}{\dfrac{1+1\times 3}{3}-1} \\
& \Rightarrow {{S}_{n}}=\dfrac{\dfrac{1}{3}\left[ {{\left( \dfrac{4}{3} \right)}^{n}}-1 \right]}{\left( \dfrac{4}{3}-1 \right)} \\
\end{align} $
The above is in the form of $ S=\dfrac{a\left( {{r}^{n}}-1 \right)}{\left( r-1 \right)} $ with $ r=\dfrac{4}{3} $ .
Hence the series in G.P.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

