
For a chemical reaction the specific rate constant at $\text{600K}$ is $\text{1}\text{.60 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{8}}}{{\text{s}}^{\text{-1}}}$, calculate the rate constant for the reaction at $\text{700K}$, if energy of activation for the reaction is $\text{2}\text{.209KJmo}{{\text{l}}^{\text{-1}}}$.
Answer
564.6k+ views
Hint: On increasing temperature rate of reaction increases whether the reaction is exothermic or endothermic when temperature increases $\text{KE}$ of molecules increases, number of activated molecules increases. Thus the rate constant is increased. Arrhenius proposed a mathematical expression to give a quantitative relation between the rate constant and temperature.
$\begin{align}
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{k =}\,\,\text{A}\text{.}{{\text{e}}^{\text{-}\dfrac{{{\text{E}}_{\text{a}}}}{\text{RT}}}}..........(i) \\
& \text{where,}\,\,\text{A}\,-\,\text{frequency}\,\text{factor or Arrhenius constant} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{\text{E}}_{\text{a}}}-\,\text{activation}\,\text{energy} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{R -}\,\,\text{gas}\,\text{constant} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{T}\,\,-\,\text{temperature in K} \\
\end{align}$
- Rate constant is a proportionality constant which is represented by ‘k’, the value of ‘k’ depends on the particular reaction which is being studied and temperature at which reaction takes place.
- Activation energy of a reaction is represented by ${{\text{E}}_{\text{a}}}$. It is the minimum extra amount of energy required by reactant molecules for converting into product, or the additional energy which is required to attain threshold energy is called activation energy.
Complete Solution :
We will calculate the rate constant with the help of Arrhenius equation –
Suppose at temperature ${{\text{T}}_{\text{1}}}\text{K}$ and ${{\text{T}}_{2}}\text{K}$ the rate constants of the reaction are ${{\text{K}}_{\text{1}}}$ and ${{\text{K}}_{2}}$ respectively so after applying equation (i) we get ${{\text{k}}_{\text{1}}}\text{=}\,\text{A}{{\text{e}}^{\text{-}\dfrac{{{\text{E}}_{\text{a}}}}{\text{R}{{\text{T}}_{\text{1}}}}}}........\text{(ii)}$
${{\text{k}}_{\text{2}}}\text{=}\,\text{A}{{\text{e}}^{\text{-}\dfrac{{{\text{E}}_{\text{a}}}}{\text{R}{{\text{T}}_{\text{2}}}}}}........\text{(iii)}$
After dividing equation (iii) by equation (ii) we get
\[\begin{align}
& \dfrac{{{\text{k}}_{\text{2}}}}{{{\text{k}}_{\text{1}}}}\text{=}\,\frac{{{\text{e}}^{\text{-}\dfrac{{{\text{E}}_{\text{a}}}}{\text{R}{{\text{T}}_{\text{2}}}}}}}{{{\text{e}}^{\text{-}\dfrac{{{\text{E}}_{\text{a}}}}{\text{R}{{\text{T}}_{\text{1}}}}}}} \\
& \text{after}\,\text{taking}\,\text{log}\,\text{on}\,\text{both}\,\text{side} \\
& \text{log(}\dfrac{{{\text{k}}_{\text{2}}}}{{{\text{k}}_{\text{1}}}}\text{) = }\,\text{log}\,\text{(}{{\text{e}}^{\text{-}\dfrac{{{\text{E}}_{\text{a}}}}{\text{R}}\text{(}\dfrac{\text{1}}{{{\text{T}}_{\text{2}}}}\text{-}\dfrac{\text{1}}{{{\text{T}}_{\text{1}}}}\text{)}}}\text{)} \\
& \text{log(}\dfrac{{{\text{k}}_{\text{2}}}}{{{\text{k}}_{\text{1}}}}\text{) =}\,\,\dfrac{{{\text{E}}_{\text{a}}}}{\text{R}}\text{(}\dfrac{\text{1}}{{{\text{T}}_{\text{1}}}}\text{-}\dfrac{\text{1}}{{{\text{T}}_{\text{2}}}}\text{)}.......\text{(iv)} \\
& \\
\end{align}\]
After putting ${{\text{T}}_{\text{1}}}\text{= 600K,}\,\,{{\text{K}}_{1}}=\,1.60\times {{10}^{-6}}{{\text{s}}^{\text{-1}}}\,\,{{\text{T}}_{2}}\text{= 700K,}\,{{\text{E}}_{\text{a}}}\text{= 2}\text{.209 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{3}}}{\scriptstyle{}^{\text{J}}/{}_{\text{mol}}}\,\,\text{and}\,\text{R = 8}\text{.314J}{{\text{K}}^{\text{-1}}}\text{mo}{{\text{l}}^{\text{-1}}}$
In equation (IV) we will calculate the value of ${{\text{k}}_{\text{2}}}$
\[\begin{align}
& \text{log(}\dfrac{{{\text{k}}_{\text{2}}}}{{{\text{k}}_{\text{1}}}}\text{) =}\,\,\dfrac{{{\text{E}}_{\text{a}}}}{\text{R}}\text{(}\dfrac{\text{1}}{{{\text{T}}_{\text{1}}}}\text{-}\dfrac{\text{1}}{{{\text{T}}_{\text{2}}}}\text{)} \\
& \text{log(}\dfrac{{{\text{k}}_{\text{2}}}}{{{\text{k}}_{\text{1}}}}\text{) =}\,\dfrac{\text{2209}}{\text{8}\text{.314}}\text{(}\dfrac{\text{1}}{\text{600}}\text{-}\frac{\text{1}}{\text{700}}\text{)} \\
& \text{log(}\dfrac{{{\text{k}}_{\text{2}}}}{{{\text{k}}_{\text{1}}}}\text{)=}\,\dfrac{\text{2209 }\!\!\times\!\!\text{ 100}}{\text{8}\text{.314 }\!\!\times\!\!\text{ 6 }\!\!\times\!\!\text{ 7}} \\
& \text{log(}\dfrac{{{\text{k}}_{\text{2}}}}{{{\text{k}}_{\text{1}}}}\text{)=}\,\text{0}\text{.63} \\
& \text{after}\,\text{taking}\,\text{antilog}\,\text{in}\,\text{both}\,\text{sides-} \\
& \dfrac{{{\text{k}}_{\text{2}}}}{\text{1}\text{.6 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{6}}}}\text{=}\,\,\text{antilog (0}\text{.63)} \\
& {{\text{k}}_{\text{2}}}\,\,\text{=}\,\,\text{1}\text{.87 }\!\!\times\!\!\text{ 1}\text{.6 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{6}}} \\
& {{\text{k}}_{\text{2}}}\,\,\text{=}\,\text{3 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{6}}}{{\text{s}}^{\text{-1}}} \\
\end{align}\]
Note: -Unit of rate constant also depends on the order of reaction so, ${{\text{s}}^{\text{-1}}}$ represents the first order of reaction. Temperature must be present in kelvin.
-${{\text{e}}^{\text{-}\dfrac{{{\text{E}}_{\text{a}}}}{\text{RT}}}}$ is known as Boltzman factor, it is the fraction of rate constant and Arrhenius constant.
-Rate constant value increases with increasing temperature.
$\begin{align}
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{k =}\,\,\text{A}\text{.}{{\text{e}}^{\text{-}\dfrac{{{\text{E}}_{\text{a}}}}{\text{RT}}}}..........(i) \\
& \text{where,}\,\,\text{A}\,-\,\text{frequency}\,\text{factor or Arrhenius constant} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{\text{E}}_{\text{a}}}-\,\text{activation}\,\text{energy} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{R -}\,\,\text{gas}\,\text{constant} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{T}\,\,-\,\text{temperature in K} \\
\end{align}$
- Rate constant is a proportionality constant which is represented by ‘k’, the value of ‘k’ depends on the particular reaction which is being studied and temperature at which reaction takes place.
- Activation energy of a reaction is represented by ${{\text{E}}_{\text{a}}}$. It is the minimum extra amount of energy required by reactant molecules for converting into product, or the additional energy which is required to attain threshold energy is called activation energy.
Complete Solution :
We will calculate the rate constant with the help of Arrhenius equation –
Suppose at temperature ${{\text{T}}_{\text{1}}}\text{K}$ and ${{\text{T}}_{2}}\text{K}$ the rate constants of the reaction are ${{\text{K}}_{\text{1}}}$ and ${{\text{K}}_{2}}$ respectively so after applying equation (i) we get ${{\text{k}}_{\text{1}}}\text{=}\,\text{A}{{\text{e}}^{\text{-}\dfrac{{{\text{E}}_{\text{a}}}}{\text{R}{{\text{T}}_{\text{1}}}}}}........\text{(ii)}$
${{\text{k}}_{\text{2}}}\text{=}\,\text{A}{{\text{e}}^{\text{-}\dfrac{{{\text{E}}_{\text{a}}}}{\text{R}{{\text{T}}_{\text{2}}}}}}........\text{(iii)}$
After dividing equation (iii) by equation (ii) we get
\[\begin{align}
& \dfrac{{{\text{k}}_{\text{2}}}}{{{\text{k}}_{\text{1}}}}\text{=}\,\frac{{{\text{e}}^{\text{-}\dfrac{{{\text{E}}_{\text{a}}}}{\text{R}{{\text{T}}_{\text{2}}}}}}}{{{\text{e}}^{\text{-}\dfrac{{{\text{E}}_{\text{a}}}}{\text{R}{{\text{T}}_{\text{1}}}}}}} \\
& \text{after}\,\text{taking}\,\text{log}\,\text{on}\,\text{both}\,\text{side} \\
& \text{log(}\dfrac{{{\text{k}}_{\text{2}}}}{{{\text{k}}_{\text{1}}}}\text{) = }\,\text{log}\,\text{(}{{\text{e}}^{\text{-}\dfrac{{{\text{E}}_{\text{a}}}}{\text{R}}\text{(}\dfrac{\text{1}}{{{\text{T}}_{\text{2}}}}\text{-}\dfrac{\text{1}}{{{\text{T}}_{\text{1}}}}\text{)}}}\text{)} \\
& \text{log(}\dfrac{{{\text{k}}_{\text{2}}}}{{{\text{k}}_{\text{1}}}}\text{) =}\,\,\dfrac{{{\text{E}}_{\text{a}}}}{\text{R}}\text{(}\dfrac{\text{1}}{{{\text{T}}_{\text{1}}}}\text{-}\dfrac{\text{1}}{{{\text{T}}_{\text{2}}}}\text{)}.......\text{(iv)} \\
& \\
\end{align}\]
After putting ${{\text{T}}_{\text{1}}}\text{= 600K,}\,\,{{\text{K}}_{1}}=\,1.60\times {{10}^{-6}}{{\text{s}}^{\text{-1}}}\,\,{{\text{T}}_{2}}\text{= 700K,}\,{{\text{E}}_{\text{a}}}\text{= 2}\text{.209 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{3}}}{\scriptstyle{}^{\text{J}}/{}_{\text{mol}}}\,\,\text{and}\,\text{R = 8}\text{.314J}{{\text{K}}^{\text{-1}}}\text{mo}{{\text{l}}^{\text{-1}}}$
In equation (IV) we will calculate the value of ${{\text{k}}_{\text{2}}}$
\[\begin{align}
& \text{log(}\dfrac{{{\text{k}}_{\text{2}}}}{{{\text{k}}_{\text{1}}}}\text{) =}\,\,\dfrac{{{\text{E}}_{\text{a}}}}{\text{R}}\text{(}\dfrac{\text{1}}{{{\text{T}}_{\text{1}}}}\text{-}\dfrac{\text{1}}{{{\text{T}}_{\text{2}}}}\text{)} \\
& \text{log(}\dfrac{{{\text{k}}_{\text{2}}}}{{{\text{k}}_{\text{1}}}}\text{) =}\,\dfrac{\text{2209}}{\text{8}\text{.314}}\text{(}\dfrac{\text{1}}{\text{600}}\text{-}\frac{\text{1}}{\text{700}}\text{)} \\
& \text{log(}\dfrac{{{\text{k}}_{\text{2}}}}{{{\text{k}}_{\text{1}}}}\text{)=}\,\dfrac{\text{2209 }\!\!\times\!\!\text{ 100}}{\text{8}\text{.314 }\!\!\times\!\!\text{ 6 }\!\!\times\!\!\text{ 7}} \\
& \text{log(}\dfrac{{{\text{k}}_{\text{2}}}}{{{\text{k}}_{\text{1}}}}\text{)=}\,\text{0}\text{.63} \\
& \text{after}\,\text{taking}\,\text{antilog}\,\text{in}\,\text{both}\,\text{sides-} \\
& \dfrac{{{\text{k}}_{\text{2}}}}{\text{1}\text{.6 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{6}}}}\text{=}\,\,\text{antilog (0}\text{.63)} \\
& {{\text{k}}_{\text{2}}}\,\,\text{=}\,\,\text{1}\text{.87 }\!\!\times\!\!\text{ 1}\text{.6 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{6}}} \\
& {{\text{k}}_{\text{2}}}\,\,\text{=}\,\text{3 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{6}}}{{\text{s}}^{\text{-1}}} \\
\end{align}\]
Note: -Unit of rate constant also depends on the order of reaction so, ${{\text{s}}^{\text{-1}}}$ represents the first order of reaction. Temperature must be present in kelvin.
-${{\text{e}}^{\text{-}\dfrac{{{\text{E}}_{\text{a}}}}{\text{RT}}}}$ is known as Boltzman factor, it is the fraction of rate constant and Arrhenius constant.
-Rate constant value increases with increasing temperature.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

