
For \[2 \times 3\] matrix \[A = \left[ {{a_{ij}}} \right]\] whose elements are given by \[{a_{ij}} = \dfrac{{{{(i + j)}^2}}}{2}\] then A is equal to
A. \[\left[ \begin{gathered}
\begin{array}{*{20}{c}}
2&8&{\dfrac{9}{2}}
\end{array} \\
\begin{array}{*{20}{c}}
8&{\dfrac{9}{2}}&{\dfrac{{25}}{2}}
\end{array} \\
\end{gathered} \right]\]
B. \[\left[ \begin{gathered}
\begin{array}{*{20}{c}}
2&{\dfrac{9}{2}}&8
\end{array} \\
\begin{array}{*{20}{c}}
{\dfrac{9}{2}}&8&{\dfrac{{25}}{2}}
\end{array} \\
\end{gathered} \right]\]
C. \[\left[ \begin{gathered}
\begin{array}{*{20}{c}}
2&{\dfrac{9}{2}}&8
\end{array} \\
\begin{array}{*{20}{c}}
8&{\dfrac{9}{2}}&{\dfrac{{25}}{2}}
\end{array} \\
\end{gathered} \right]\]
D. \[\left[ \begin{gathered}
\begin{array}{*{20}{c}}
2&{\dfrac{{25}}{2}}&8
\end{array} \\
\begin{array}{*{20}{c}}
{\dfrac{9}{2}}&{\dfrac{9}{2}}&8
\end{array} \\
\end{gathered} \right]\]
Answer
567k+ views
Hint: We use the general method of forming a matrix using the fact that ‘i’ represents the row and ‘j’ represents the column of the matrix. An element \[{a_{ij}}\]is calculated by substituting values of respective row and column into the formula. From a matrix with calculated values and check which option matches the matrix.
* A matrix of order \[m \times n\]tells us there are m rows and n columns for the matrix.
Step-By-Step answer:
We are given a matrix A of order \[2 \times 3\]
For a matrix A, with 2 rows and 3 columns we can write \[A = \left[ \begin{gathered}
\begin{array}{*{20}{c}}
{{A_{11}}}&{{A_{12}}}&{{A_{13}}}
\end{array} \\
\begin{array}{*{20}{c}}
{{A_{21}}}&{{A_{22}}}&{{A_{23}}}
\end{array} \\
\end{gathered} \right]\]
We know ‘i’ represents the row and ‘j’ represents the column of the matrix
Also, \[{a_{ij}} = \dfrac{{{{(i + j)}^2}}}{2}\]gives the value of each element when we substitute value of respective row and column of that element.
Then substitute values of i and j in the matrix A
\[ \Rightarrow A = \left[ \begin{gathered}
\begin{array}{*{20}{c}}
{\dfrac{{{{(1 + 1)}^2}}}{2}}&{\dfrac{{{{(1 + 2)}^2}}}{2}}&{\dfrac{{{{(1 + 3)}^2}}}{2}}
\end{array} \\
\begin{array}{*{20}{c}}
{\dfrac{{{{(2 + 1)}^2}}}{2}}&{\dfrac{{{{(2 + 2)}^2}}}{2}}&{\dfrac{{{{(2 + 3)}^2}}}{2}}
\end{array} \\
\end{gathered} \right]\]
Calculate the sum in numerators of the elements of the matrix
\[ \Rightarrow A = \left[ \begin{gathered}
\begin{array}{*{20}{c}}
{\dfrac{{{{(2)}^2}}}{2}}&{\dfrac{{{{(3)}^2}}}{2}}&{\dfrac{{{{(4)}^2}}}{2}}
\end{array} \\
\begin{array}{*{20}{c}}
{\dfrac{{{{(3)}^2}}}{2}}&{\dfrac{{{{(4)}^2}}}{2}}&{\dfrac{{{{(5)}^2}}}{2}}
\end{array} \\
\end{gathered} \right]\]
Square each term in the numerators of the elements in the matrix
\[ \Rightarrow A = \left[ \begin{gathered}
\begin{array}{*{20}{c}}
{\dfrac{4}{2}}&{\dfrac{9}{2}}&{\dfrac{{16}}{2}}
\end{array} \\
\begin{array}{*{20}{c}}
{\dfrac{9}{2}}&{\dfrac{{16}}{2}}&{\dfrac{{25}}{2}}
\end{array} \\
\end{gathered} \right]\]
Cancel the same terms or factors from the numerator and denominator of elements of the matrix wherever the cancellation is possible.
\[ \Rightarrow A = \left[ \begin{gathered}
\begin{array}{*{20}{c}}
2&{\dfrac{9}{2}}&8
\end{array} \\
\begin{array}{*{20}{c}}
{\dfrac{9}{2}}&8&{\dfrac{{25}}{2}}
\end{array} \\
\end{gathered} \right]\]
So, matrix A is given as \[A = \left[ \begin{gathered}
\begin{array}{*{20}{c}}
2&{\dfrac{9}{2}}&8
\end{array} \\
\begin{array}{*{20}{c}}
{\dfrac{9}{2}}&8&{\dfrac{{25}}{2}}
\end{array} \\
\end{gathered} \right]\]
Since this matches the matrix in option B
\[\therefore \]Option B is correct.
Note: Many students make the mistake of leaving the values in fraction form even when they can be cancelled and converted into simpler form. Keep in mind that given options we have the simplest form and some elements as whole numbers as well, so we have to write fractions in simplest form to match the given options.
* A matrix of order \[m \times n\]tells us there are m rows and n columns for the matrix.
Step-By-Step answer:
We are given a matrix A of order \[2 \times 3\]
For a matrix A, with 2 rows and 3 columns we can write \[A = \left[ \begin{gathered}
\begin{array}{*{20}{c}}
{{A_{11}}}&{{A_{12}}}&{{A_{13}}}
\end{array} \\
\begin{array}{*{20}{c}}
{{A_{21}}}&{{A_{22}}}&{{A_{23}}}
\end{array} \\
\end{gathered} \right]\]
We know ‘i’ represents the row and ‘j’ represents the column of the matrix
Also, \[{a_{ij}} = \dfrac{{{{(i + j)}^2}}}{2}\]gives the value of each element when we substitute value of respective row and column of that element.
Then substitute values of i and j in the matrix A
\[ \Rightarrow A = \left[ \begin{gathered}
\begin{array}{*{20}{c}}
{\dfrac{{{{(1 + 1)}^2}}}{2}}&{\dfrac{{{{(1 + 2)}^2}}}{2}}&{\dfrac{{{{(1 + 3)}^2}}}{2}}
\end{array} \\
\begin{array}{*{20}{c}}
{\dfrac{{{{(2 + 1)}^2}}}{2}}&{\dfrac{{{{(2 + 2)}^2}}}{2}}&{\dfrac{{{{(2 + 3)}^2}}}{2}}
\end{array} \\
\end{gathered} \right]\]
Calculate the sum in numerators of the elements of the matrix
\[ \Rightarrow A = \left[ \begin{gathered}
\begin{array}{*{20}{c}}
{\dfrac{{{{(2)}^2}}}{2}}&{\dfrac{{{{(3)}^2}}}{2}}&{\dfrac{{{{(4)}^2}}}{2}}
\end{array} \\
\begin{array}{*{20}{c}}
{\dfrac{{{{(3)}^2}}}{2}}&{\dfrac{{{{(4)}^2}}}{2}}&{\dfrac{{{{(5)}^2}}}{2}}
\end{array} \\
\end{gathered} \right]\]
Square each term in the numerators of the elements in the matrix
\[ \Rightarrow A = \left[ \begin{gathered}
\begin{array}{*{20}{c}}
{\dfrac{4}{2}}&{\dfrac{9}{2}}&{\dfrac{{16}}{2}}
\end{array} \\
\begin{array}{*{20}{c}}
{\dfrac{9}{2}}&{\dfrac{{16}}{2}}&{\dfrac{{25}}{2}}
\end{array} \\
\end{gathered} \right]\]
Cancel the same terms or factors from the numerator and denominator of elements of the matrix wherever the cancellation is possible.
\[ \Rightarrow A = \left[ \begin{gathered}
\begin{array}{*{20}{c}}
2&{\dfrac{9}{2}}&8
\end{array} \\
\begin{array}{*{20}{c}}
{\dfrac{9}{2}}&8&{\dfrac{{25}}{2}}
\end{array} \\
\end{gathered} \right]\]
So, matrix A is given as \[A = \left[ \begin{gathered}
\begin{array}{*{20}{c}}
2&{\dfrac{9}{2}}&8
\end{array} \\
\begin{array}{*{20}{c}}
{\dfrac{9}{2}}&8&{\dfrac{{25}}{2}}
\end{array} \\
\end{gathered} \right]\]
Since this matches the matrix in option B
\[\therefore \]Option B is correct.
Note: Many students make the mistake of leaving the values in fraction form even when they can be cancelled and converted into simpler form. Keep in mind that given options we have the simplest form and some elements as whole numbers as well, so we have to write fractions in simplest form to match the given options.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

