
For $0 < c \leqslant \pi ,{\sinh ^{ - 1}}(\cot x) = $
A.$\log (\cot \frac{x}{2})$
B.$\log (\tan \frac{x}{2})$
C.$\log (1 + \cot x)$
D.$\log (1 + \tan x)$
Answer
590.4k+ views
Hint: We know that ${\sinh ^{ - 1}}x = \log \left( {x + \sqrt {1 + {x^2}} } \right)$ and now we need to replace x by cot x and simplify using the identities like $\cos e{c^2}x - {\cot ^2}x = 1$,$\cot x = \frac{{\cos x}}{{\sin x}}$ and $\cos ecx = \frac{1}{{\sin x}}$,$2{\cos ^2}x = 1 + \cos 2x$ and $\sin 2x = 2\sin x\cos x $ to obtain the required value.
Complete step-by-step answer:
We are given an inverse hyperbolic function.
We know that ${\sinh ^{ - 1}}x = \log \left( {x + \sqrt {1 + {x^2}} } \right)$
Here we are asked to find ${\sinh ^{ - 1}}(\cot x)$
We have cot x in the place of x
So by applying the formula above we get
\[
\Rightarrow {\sinh ^{ - 1}}(\cot x) = \log \left( {\cot x + \sqrt {1 + {{(\cot x)}^2}} } \right) \\
\Rightarrow {\sinh ^{ - 1}}(\cot x) = \log \left( {\cot x + \sqrt {1 + ({{\cot }^2}x)} } \right) \\
\]
By the identity $\cos e{c^2}x - {\cot ^2}x = 1$
We get, $\cos e{c^2}x = 1 + {\cot ^2}x$
Therefore ,
\[
\Rightarrow {\sinh ^{ - 1}}(\cot x) = \log \left( {\cot x + \sqrt {\cos e{c^2}x} } \right) \\
\Rightarrow {\sinh ^{ - 1}}(\cot x) = \log \left( {\cot x + \cos ecx} \right) \\
\]
And here we know that $\cot x = \frac{{\cos x}}{{\sin x}}$and$\cos ecx = \frac{1}{{\sin x}}$
Substituting in the above equation, we get
\[
\Rightarrow {\sinh ^{ - 1}}(\cot x) = \log \left( {\frac{{\cos x}}{{\sin x}} + \frac{1}{{\sin x}}} \right) \\
\Rightarrow {\sinh ^{ - 1}}(\cot x) = \log \left( {\frac{{\cos x + 1}}{{\sin x}}} \right) \\
\]
Now let's use the identity.$2{\cos ^2}x = 1 + \cos 2x$.and $\sin 2x = 2\sin x\cos x$in the above equation
\[
\Rightarrow {\sinh ^{ - 1}}(\cot x) = \log \left( {\frac{{2{{\cos }^2}\frac{x}{2}}}{{2\sin \frac{x}{2}\cos \frac{x}{2}}}} \right) \\
\Rightarrow {\sinh ^{ - 1}}(\cot x) = \log \left( {\frac{{\cos \frac{x}{2}}}{{\sin \frac{x}{2}}}} \right) \\
\Rightarrow {\sinh ^{ - 1}}(\cot x) = \log \left( {\cot \frac{x}{2}} \right) \\
\]
Therefore the correct option is A.
Note: Hyperbolic functions also satisfy identities analogous to those of the ordinary trigonometric functions and have important physical applications. For example, the hyperbolic cosine function may be used to describe the shape of the curve formed by a high-voltage line suspended between two towers
In mathematics, the inverse hyperbolic functions are the inverse functions of the hyperbolic functions.
For a given value of a hyperbolic function, the corresponding inverse hyperbolic function provides the corresponding hyperbolic angle
Complete step-by-step answer:
We are given an inverse hyperbolic function.
We know that ${\sinh ^{ - 1}}x = \log \left( {x + \sqrt {1 + {x^2}} } \right)$
Here we are asked to find ${\sinh ^{ - 1}}(\cot x)$
We have cot x in the place of x
So by applying the formula above we get
\[
\Rightarrow {\sinh ^{ - 1}}(\cot x) = \log \left( {\cot x + \sqrt {1 + {{(\cot x)}^2}} } \right) \\
\Rightarrow {\sinh ^{ - 1}}(\cot x) = \log \left( {\cot x + \sqrt {1 + ({{\cot }^2}x)} } \right) \\
\]
By the identity $\cos e{c^2}x - {\cot ^2}x = 1$
We get, $\cos e{c^2}x = 1 + {\cot ^2}x$
Therefore ,
\[
\Rightarrow {\sinh ^{ - 1}}(\cot x) = \log \left( {\cot x + \sqrt {\cos e{c^2}x} } \right) \\
\Rightarrow {\sinh ^{ - 1}}(\cot x) = \log \left( {\cot x + \cos ecx} \right) \\
\]
And here we know that $\cot x = \frac{{\cos x}}{{\sin x}}$and$\cos ecx = \frac{1}{{\sin x}}$
Substituting in the above equation, we get
\[
\Rightarrow {\sinh ^{ - 1}}(\cot x) = \log \left( {\frac{{\cos x}}{{\sin x}} + \frac{1}{{\sin x}}} \right) \\
\Rightarrow {\sinh ^{ - 1}}(\cot x) = \log \left( {\frac{{\cos x + 1}}{{\sin x}}} \right) \\
\]
Now let's use the identity.$2{\cos ^2}x = 1 + \cos 2x$.and $\sin 2x = 2\sin x\cos x$in the above equation
\[
\Rightarrow {\sinh ^{ - 1}}(\cot x) = \log \left( {\frac{{2{{\cos }^2}\frac{x}{2}}}{{2\sin \frac{x}{2}\cos \frac{x}{2}}}} \right) \\
\Rightarrow {\sinh ^{ - 1}}(\cot x) = \log \left( {\frac{{\cos \frac{x}{2}}}{{\sin \frac{x}{2}}}} \right) \\
\Rightarrow {\sinh ^{ - 1}}(\cot x) = \log \left( {\cot \frac{x}{2}} \right) \\
\]
Therefore the correct option is A.
Note: Hyperbolic functions also satisfy identities analogous to those of the ordinary trigonometric functions and have important physical applications. For example, the hyperbolic cosine function may be used to describe the shape of the curve formed by a high-voltage line suspended between two towers
In mathematics, the inverse hyperbolic functions are the inverse functions of the hyperbolic functions.
For a given value of a hyperbolic function, the corresponding inverse hyperbolic function provides the corresponding hyperbolic angle
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

