
$ f\left( x \right) = \left\{ \begin{array}{l}
\dfrac{{1 - {{\sin }^3}x}}{{3{{\cos }^2}x}}\;\;\;\;\;\;\;\;\;\;{\rm{if}}\;x < \dfrac{\pi }{2}\\
a\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{if }}x = \dfrac{\pi }{2}\\
\dfrac{{b\left( {1 - \sin x} \right)}}{{{{\left( {\pi - 2x} \right)}^2}}}\;\;\;\;\;\;\;\;{\rm{if }}x > \dfrac{\pi }{2}
\end{array} \right. $ is continuous at $ x = \dfrac{\pi }{2} $ find $ a $ and $ b $ .
Answer
573k+ views
Hint: We know the function is continuous at $ x = \dfrac{\pi }{2} $ then take limit $ \dfrac{{1 - {{\sin }^3}x}}{{3{{\cos }^2}x}} $ at $ x < \dfrac{\pi }{2} $ is equal to $ a $ . Then since the function is continuous at $ x = \dfrac{\pi }{2} $ then take the limit $ a $ is equal to limit a $ \dfrac{{b\left( {1 - \sin x} \right)}}{{{{\left( {\pi - 2x} \right)}^2}}} $ at $ x > \dfrac{\pi }{2} $ .
Complete step-by-step answer:
The given function is $ f\left( x \right) = \left\{ \begin{array}{l}
\dfrac{{1 - {{\sin }^3}x}}{{3{{\cos }^2}x}}\;\;\;\;\;\;\;\;\;\;{\rm{if}}\;x < \dfrac{\pi }{2}\\
a\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{if }}x = \dfrac{\pi }{2}\\
\dfrac{{b\left( {1 - \sin x} \right)}}{{{{\left( {\pi - 2x} \right)}^2}}}\;\;\;\;\;\;\;\;{\rm{if }}x > \dfrac{\pi }{2}
\end{array} \right. $ .
Also, it is given that the function is continuous at $ x = \dfrac{\pi }{2} $ .
The definition of continuous function:
We say the function is continuous at some point let us say it as $ a $ when limit at $ x \to a $ function is equal to function at point $ a $ that is,
$ \mathop {\lim }\limits_{x \to a} f\left( x \right) = f\left( a \right) $
Since, it is given that the function is continuous at $ x = \dfrac{\pi }{2} $ so,
$ \mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{1 - {{\sin }^3}x}}{{3{{\cos }^2}x}} = a $ ........(1)
Now, let us substitute $ \dfrac{\pi }{2} $ in the function we get,
$ \dfrac{{1 - {{\sin }^3}\dfrac{\pi }{2}}}{{3{{\cos }^2}\dfrac{\pi }{2}}} $
Since, we know the value of $ \sin \dfrac{\pi }{2} $ is $ 1 $ and the value for $ \cos \left( {\dfrac{\pi }{2}} \right) $ is $ 0 $ .
So, now let us substitute $ \sin \dfrac{\pi }{2} $ value and $ \cos \left( {\dfrac{\pi }{2}} \right) $ value in the above equation, we get
$ \dfrac{{1 - 1}}{{3 \times 0}} = \dfrac{0}{0} $
Since, the function is $ \dfrac{0}{0} $ for now let us use L’hospital rule.
L’ Hospital rule says that if $ \mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{0}{0} $ , then we will take .
So after applying L’Hospital rule in our problem we have,
Now, by chain rule first the derivative for numerator term is,
$ \dfrac{d}{{dx}}\left( {1 - {{\sin }^3}x} \right) = - 3{\sin ^2}x\cos x $
Also, second the derivative for denominator term is, we get,
$ \dfrac{d}{{dx}}\left( {3{{\cos }^2}x} \right)6\cos x \times \left( { - \sin x} \right) $
On substituting in equations (1) we get,
$ \begin{array}{c}
\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{ - 3{{\sin }^2}x\cos x}}{{6\cos x \times \left( { - \sin x} \right)}} = a\\
\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{\sin x}}{2} = a\\
\dfrac{1}{2} = a
\end{array} $
The value for $ a $ is $ \dfrac{1}{2} $ .
Now we need to find the value for $ b $ .
Using the continuity property we have, since it is given that the function is continuous at $ x = \dfrac{\pi }{2} $ so,
$ \mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{b\left( {1 - \sin x} \right)}}{{{{\left( {\pi - 2x} \right)}^2}}} = \dfrac{1}{2} $ ...........(2)
Now let us substitute $ \dfrac{\pi }{2} $ in the function we get,
$ \dfrac{{b\left( {1 - \sin \dfrac{\pi }{2}} \right)}}{{{{\left( {\pi - 2x} \right)}^2}}} $
Since value of $ \sin \dfrac{\pi }{2} $ is $ 1 $ , so now let us substitute $ \sin \dfrac{\pi }{2} $ value in the above equation, we get,
$ \dfrac{{b\left( 0 \right)}}{0} = \dfrac{0}{0} $
Since, the function is $ \dfrac{0}{0} $ for now let us use L’Hospital rule.
L’ Hospital rule says that if $ \mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{0}{0} $ then we take .
So after applying L’Hospital rule in our problem we have,
The derivative for numerator term is,
$ \dfrac{d}{{dx}}b\left( {1 - \sin x} \right) = - b\cos x $
The derivative for denominator term is, we get,
$ \dfrac{d}{{dx}}{\left( {\pi - 2x} \right)^2} = 2\left( {\pi - 2x} \right)\left( { - 2} \right) $
On substituting the value in (2) we get,
$ \mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{ - b\cos x}}{{ - 4\left( {\pi - 2x} \right)}} = \dfrac{0}{0} $
Let us use L’Hospital rule again we get,
$ \begin{array}{c}
\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{b\sin x}}{8} = \dfrac{1}{2}\\
\dfrac{{b\sin \left( {\dfrac{\pi }{2}} \right)}}{8} = \dfrac{1}{2}\\
\dfrac{b}{8} = \dfrac{1}{2}\\
b = 4
\end{array} $
The value for $ b $ is $ 4 $ .
Note: If the function is continuous at some point we can use $ \mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} f\left( x \right) $ is equal to $ f\left( a \right) $ . Otherwise we cannot use it. For L’Hospital rule if the denominator term is $ 0 $ and numerator term is non zero we cannot use this rule and vice versa.
Complete step-by-step answer:
The given function is $ f\left( x \right) = \left\{ \begin{array}{l}
\dfrac{{1 - {{\sin }^3}x}}{{3{{\cos }^2}x}}\;\;\;\;\;\;\;\;\;\;{\rm{if}}\;x < \dfrac{\pi }{2}\\
a\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{if }}x = \dfrac{\pi }{2}\\
\dfrac{{b\left( {1 - \sin x} \right)}}{{{{\left( {\pi - 2x} \right)}^2}}}\;\;\;\;\;\;\;\;{\rm{if }}x > \dfrac{\pi }{2}
\end{array} \right. $ .
Also, it is given that the function is continuous at $ x = \dfrac{\pi }{2} $ .
The definition of continuous function:
We say the function is continuous at some point let us say it as $ a $ when limit at $ x \to a $ function is equal to function at point $ a $ that is,
$ \mathop {\lim }\limits_{x \to a} f\left( x \right) = f\left( a \right) $
Since, it is given that the function is continuous at $ x = \dfrac{\pi }{2} $ so,
$ \mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{1 - {{\sin }^3}x}}{{3{{\cos }^2}x}} = a $ ........(1)
Now, let us substitute $ \dfrac{\pi }{2} $ in the function we get,
$ \dfrac{{1 - {{\sin }^3}\dfrac{\pi }{2}}}{{3{{\cos }^2}\dfrac{\pi }{2}}} $
Since, we know the value of $ \sin \dfrac{\pi }{2} $ is $ 1 $ and the value for $ \cos \left( {\dfrac{\pi }{2}} \right) $ is $ 0 $ .
So, now let us substitute $ \sin \dfrac{\pi }{2} $ value and $ \cos \left( {\dfrac{\pi }{2}} \right) $ value in the above equation, we get
$ \dfrac{{1 - 1}}{{3 \times 0}} = \dfrac{0}{0} $
Since, the function is $ \dfrac{0}{0} $ for now let us use L’hospital rule.
L’ Hospital rule says that if $ \mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{0}{0} $ , then we will take .
So after applying L’Hospital rule in our problem we have,
Now, by chain rule first the derivative for numerator term is,
$ \dfrac{d}{{dx}}\left( {1 - {{\sin }^3}x} \right) = - 3{\sin ^2}x\cos x $
Also, second the derivative for denominator term is, we get,
$ \dfrac{d}{{dx}}\left( {3{{\cos }^2}x} \right)6\cos x \times \left( { - \sin x} \right) $
On substituting in equations (1) we get,
$ \begin{array}{c}
\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{ - 3{{\sin }^2}x\cos x}}{{6\cos x \times \left( { - \sin x} \right)}} = a\\
\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{\sin x}}{2} = a\\
\dfrac{1}{2} = a
\end{array} $
The value for $ a $ is $ \dfrac{1}{2} $ .
Now we need to find the value for $ b $ .
Using the continuity property we have, since it is given that the function is continuous at $ x = \dfrac{\pi }{2} $ so,
$ \mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{b\left( {1 - \sin x} \right)}}{{{{\left( {\pi - 2x} \right)}^2}}} = \dfrac{1}{2} $ ...........(2)
Now let us substitute $ \dfrac{\pi }{2} $ in the function we get,
$ \dfrac{{b\left( {1 - \sin \dfrac{\pi }{2}} \right)}}{{{{\left( {\pi - 2x} \right)}^2}}} $
Since value of $ \sin \dfrac{\pi }{2} $ is $ 1 $ , so now let us substitute $ \sin \dfrac{\pi }{2} $ value in the above equation, we get,
$ \dfrac{{b\left( 0 \right)}}{0} = \dfrac{0}{0} $
Since, the function is $ \dfrac{0}{0} $ for now let us use L’Hospital rule.
L’ Hospital rule says that if $ \mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{0}{0} $ then we take .
So after applying L’Hospital rule in our problem we have,
The derivative for numerator term is,
$ \dfrac{d}{{dx}}b\left( {1 - \sin x} \right) = - b\cos x $
The derivative for denominator term is, we get,
$ \dfrac{d}{{dx}}{\left( {\pi - 2x} \right)^2} = 2\left( {\pi - 2x} \right)\left( { - 2} \right) $
On substituting the value in (2) we get,
$ \mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{ - b\cos x}}{{ - 4\left( {\pi - 2x} \right)}} = \dfrac{0}{0} $
Let us use L’Hospital rule again we get,
$ \begin{array}{c}
\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{b\sin x}}{8} = \dfrac{1}{2}\\
\dfrac{{b\sin \left( {\dfrac{\pi }{2}} \right)}}{8} = \dfrac{1}{2}\\
\dfrac{b}{8} = \dfrac{1}{2}\\
b = 4
\end{array} $
The value for $ b $ is $ 4 $ .
Note: If the function is continuous at some point we can use $ \mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} f\left( x \right) $ is equal to $ f\left( a \right) $ . Otherwise we cannot use it. For L’Hospital rule if the denominator term is $ 0 $ and numerator term is non zero we cannot use this rule and vice versa.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

