
Find zeros of the quadratic polynomial whose sum and product respectively of the zeroes are $-\dfrac{8}{3},\dfrac{4}{3}$.
(a) $-2,\dfrac{1}{3}$
(b) $-2,\dfrac{-2}{3}$
(c) $-2,\dfrac{1}{3}$
(d) $-4,\dfrac{-2}{3}$
Answer
606.3k+ views
Hint: In this question, we will form a polynomial using sum of zeroes and product of zeroes formula and then find zeros using factorization. .
Complete step-by-step answer:
We know that, for a quadratic polynomial of the form $a{{x}^{2}}+bx+c$ with zero $\alpha $ and $\beta $ where $\alpha $ and $\beta $ are real numbers, sum and product of zeroes can be given as follows:
$\alpha +\beta =\dfrac{-b}{a}.........(i)$ and $\alpha \beta =\dfrac{c}{a}.........(ii)$ .
In a given question, let the required zero be $\alpha $ and $\beta $
Then we have,
\[\begin{align}
& \alpha +\beta =\dfrac{-8}{3} \\
& and\,\alpha \beta =\dfrac{4}{3} \\
\end{align}\]
Using equation(i) and (ii), we get
\[\begin{align}
& \dfrac{-8}{3}=\dfrac{-b}{a}......(iii) \\
& \dfrac{4}{3}=\dfrac{c}{a}........(iv) \\
\end{align}\]
Let us consider \[a=3\]
Then from(iii), we get,
\[\dfrac{-8}{3}=\dfrac{-b}{3}\]
Multiplying \[-3\]both sides, we get,
\[\dfrac{-8}{3}\times \left( -3 \right)=\dfrac{-b}{3}\left( -3 \right)\]
\[\Rightarrow b=8\]
And from equation(iv), we get,
\[\dfrac{4}{3}=\dfrac{c}{3}\]
Multiplying \[3\]on both sides, we get,
\[\begin{align}
& \dfrac{4}{3}\times 3=\dfrac{c}{3}\times 3 \\
& \Rightarrow c=4 \\
\end{align}\]
Therefore, the required quadratic polynomial will be,
\[k\left( 3{{x}^{2}}+8x+4 \right)\], where \[k\]is any scalar number and \[k\ne 0\]
Now, to find zeros of this polynomial, we write,
\[\begin{align}
& k\left( 3{{x}^{2}}+8x+4 \right)=0 \\
& \Rightarrow 3{{x}^{2}}+8x+4=0 \\
\end{align}\]
Splitting middle term, we get,
$3{{x}^{2}}+6x+2x+4=0$
Taking common terms, we get,
$3x\left( x+2 \right)+2\left( x+2 \right)=0$
Taking $\left( x+2 \right)$ common, we get,
$\left( x+2 \right)\left( 3x+2 \right)=0$
Therefore, either,or $3x+2=0$
$\Rightarrow $$x=-2$ or $3x=-2$
$\Rightarrow $$x=-2$ or $x=\dfrac{-2}{3}$
Hence the required zeroes are $-2$ and $\dfrac{-2}{3}$.
Therefore, the correct option is (b).
Note: Alternative way: We have $\alpha +\beta =\dfrac{-8}{3}$ .
\[\Rightarrow \alpha =\dfrac{-8}{3}-\beta \]
We also have $\alpha \beta =\dfrac{4}{3}$ .
$\Rightarrow \left( \dfrac{-8}{3}-\beta \right)\beta =\dfrac{4}{3}$
$\Rightarrow \dfrac{-8\beta }{3}-{{\beta }^{2}}-\dfrac{4}{3}=0$
$\Rightarrow -8\beta -3{{\beta }^{2}}-4=0$
So, the required equation will be $3{{x}^{2}}+8x+4=0$ .
Splitting middle term, we get,
$3{{x}^{2}}+6x+2x+4=0$
Taking common terms, we get,
$3x\left( x+2 \right)+2\left( x+2 \right)=0$
Taking $\left( x+2 \right)$ common, we get,
$\left( x+2 \right)\left( 3x+2 \right)=0$
Therefore, either,or $3x+2=0$
$\Rightarrow x=-2$ or $3x=-2$
$\Rightarrow $$x=-2$ or $x=\dfrac{-2}{3}$
Hence the required zeroes are $-2$ and $\dfrac{-2}{3}$.
Complete step-by-step answer:
We know that, for a quadratic polynomial of the form $a{{x}^{2}}+bx+c$ with zero $\alpha $ and $\beta $ where $\alpha $ and $\beta $ are real numbers, sum and product of zeroes can be given as follows:
$\alpha +\beta =\dfrac{-b}{a}.........(i)$ and $\alpha \beta =\dfrac{c}{a}.........(ii)$ .
In a given question, let the required zero be $\alpha $ and $\beta $
Then we have,
\[\begin{align}
& \alpha +\beta =\dfrac{-8}{3} \\
& and\,\alpha \beta =\dfrac{4}{3} \\
\end{align}\]
Using equation(i) and (ii), we get
\[\begin{align}
& \dfrac{-8}{3}=\dfrac{-b}{a}......(iii) \\
& \dfrac{4}{3}=\dfrac{c}{a}........(iv) \\
\end{align}\]
Let us consider \[a=3\]
Then from(iii), we get,
\[\dfrac{-8}{3}=\dfrac{-b}{3}\]
Multiplying \[-3\]both sides, we get,
\[\dfrac{-8}{3}\times \left( -3 \right)=\dfrac{-b}{3}\left( -3 \right)\]
\[\Rightarrow b=8\]
And from equation(iv), we get,
\[\dfrac{4}{3}=\dfrac{c}{3}\]
Multiplying \[3\]on both sides, we get,
\[\begin{align}
& \dfrac{4}{3}\times 3=\dfrac{c}{3}\times 3 \\
& \Rightarrow c=4 \\
\end{align}\]
Therefore, the required quadratic polynomial will be,
\[k\left( 3{{x}^{2}}+8x+4 \right)\], where \[k\]is any scalar number and \[k\ne 0\]
Now, to find zeros of this polynomial, we write,
\[\begin{align}
& k\left( 3{{x}^{2}}+8x+4 \right)=0 \\
& \Rightarrow 3{{x}^{2}}+8x+4=0 \\
\end{align}\]
Splitting middle term, we get,
$3{{x}^{2}}+6x+2x+4=0$
Taking common terms, we get,
$3x\left( x+2 \right)+2\left( x+2 \right)=0$
Taking $\left( x+2 \right)$ common, we get,
$\left( x+2 \right)\left( 3x+2 \right)=0$
Therefore, either,or $3x+2=0$
$\Rightarrow $$x=-2$ or $3x=-2$
$\Rightarrow $$x=-2$ or $x=\dfrac{-2}{3}$
Hence the required zeroes are $-2$ and $\dfrac{-2}{3}$.
Therefore, the correct option is (b).
Note: Alternative way: We have $\alpha +\beta =\dfrac{-8}{3}$ .
\[\Rightarrow \alpha =\dfrac{-8}{3}-\beta \]
We also have $\alpha \beta =\dfrac{4}{3}$ .
$\Rightarrow \left( \dfrac{-8}{3}-\beta \right)\beta =\dfrac{4}{3}$
$\Rightarrow \dfrac{-8\beta }{3}-{{\beta }^{2}}-\dfrac{4}{3}=0$
$\Rightarrow -8\beta -3{{\beta }^{2}}-4=0$
So, the required equation will be $3{{x}^{2}}+8x+4=0$ .
Splitting middle term, we get,
$3{{x}^{2}}+6x+2x+4=0$
Taking common terms, we get,
$3x\left( x+2 \right)+2\left( x+2 \right)=0$
Taking $\left( x+2 \right)$ common, we get,
$\left( x+2 \right)\left( 3x+2 \right)=0$
Therefore, either,or $3x+2=0$
$\Rightarrow x=-2$ or $3x=-2$
$\Rightarrow $$x=-2$ or $x=\dfrac{-2}{3}$
Hence the required zeroes are $-2$ and $\dfrac{-2}{3}$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

