
How do you find \[y''\] by implicit differentiation for \[4{x^2} + 3{y^2} = 6\]?
Answer
538.5k+ views
Hint: Here we have to double differentiate the given equation. we will differentiate both sides of the given equation with respect to \[x\]. Then we will take all the \[\dfrac{{dy}}{{dx}}\] terms on one side and then again differentiate both sides with respect to \[x\]. Finally, we will replace the value of \[\dfrac{{dy}}{{dx}}\] in the equation and solve it to get the required value.
Complete step-by-step answer:
We have to find \[y''\] of
\[4{x^2} + 3{y^2} = 6\]
Now differentiating both the side of the equation with respect to \[x\], we get
\[ \Rightarrow \dfrac{{d\left( {4{x^2}} \right)}}{{dx}} + \dfrac{{d\left( {3{y^2}} \right)}}{{dx}} = \dfrac{{d\left( 6 \right)}}{{dx}}\]
Now using the formula \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\] and \[\dfrac{{d\left( k \right)}}{{dx}} = 0\], we get
\[\begin{array}{l} \Rightarrow 4 \times 2 \times {x^{2 - 1}} + 3 \times 2 \times {y^{2 - 1}}\dfrac{{dy}}{{dx}} = 0\\ \Rightarrow 8x + 6y\dfrac{{dy}}{{dx}} = 0\end{array}\]
Subtracting \[8x\] from both sides, we get
\[ \Rightarrow 6y\dfrac{{dy}}{{dx}} = - 8x\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{8x}}{{6y}} = - \dfrac{{4x}}{{3y}}\]…………………….\[\left( 1 \right)\]
Now, differentiating equation \[\left( 1 \right)\] with respect to \[x\], we get
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{d}{{dx}}\left( {\dfrac{{ - 4x}}{{3y}}} \right)\]
Now using quotient rule \[\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{{du}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}}\] on right side, we get
\[\begin{array}{l} \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{3y \times \dfrac{{d\left( { - 4x} \right)}}{{dx}} - \left( { - 4x} \right)\dfrac{{d\left( {3y} \right)}}{{dx}}}}{{{{\left( {3y} \right)}^2}}}\\ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{3y \times \left( { - 4} \right) - \left( { - 4x} \right) \times 3\dfrac{{dy}}{{dx}}}}{{9{y^2}}}\end{array}\]
Multiplying the terms, we get
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{ - 12y + 12x\dfrac{{dy}}{{dx}}}}{{9{y^2}}}\]
Next, replacing the value of \[\dfrac{{dy}}{{dx}}\] in above equation, we get
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{ - 12y + \left( {12x \times \dfrac{{ - 4x}}{{3y}}} \right)}}{{9{y^2}}}\]
Multiplying the terms, we get
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{ - 12y + \left( {\dfrac{{ - 16{x^2}}}{y}} \right)}}{{9{y^2}}}\]
Taking L.C.M in the numerator, we get
\[\begin{array}{l} \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{\dfrac{{ - 12{y^2} - 16{x^2}}}{y}}}{{9{y^2}}}\\ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{ - 12{y^2} - 16{x^2}}}{{9{y^3}}}\end{array}\]
We can further simplify the above value by taking \[ - 4\] common in numerator as,
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{ - 4\left( {3{y^2} + 4{x^2}} \right)}}{{9{y^3}}}\]
Substituting the value of the given equation \[4{x^2} + 3{y^2} = 6\] in above equation, we get
\[\begin{array}{l} \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{ - 4 \times 6}}{{9{y^3}}}\\ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{ - 8}}{{3{y^3}}}\end{array}\]
So the value of \[y''\] is \[\dfrac{{ - 8}}{{3{y^3}}}\].
Note:
Implicit differentiation is used when we have implicit functions where one function doesn’t lead to another one. Implicit differentiation is done by using the chain rule and viewing \[y\] as an implicit function of \[x\]. There are various case of implicit function which in which we have \[y\] equal to a function that contains \[x,y'\] or \[y'\] in similar way we can have \[x\] equal to a function that contains \[y,x'\] or just \[x'\].
Complete step-by-step answer:
We have to find \[y''\] of
\[4{x^2} + 3{y^2} = 6\]
Now differentiating both the side of the equation with respect to \[x\], we get
\[ \Rightarrow \dfrac{{d\left( {4{x^2}} \right)}}{{dx}} + \dfrac{{d\left( {3{y^2}} \right)}}{{dx}} = \dfrac{{d\left( 6 \right)}}{{dx}}\]
Now using the formula \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\] and \[\dfrac{{d\left( k \right)}}{{dx}} = 0\], we get
\[\begin{array}{l} \Rightarrow 4 \times 2 \times {x^{2 - 1}} + 3 \times 2 \times {y^{2 - 1}}\dfrac{{dy}}{{dx}} = 0\\ \Rightarrow 8x + 6y\dfrac{{dy}}{{dx}} = 0\end{array}\]
Subtracting \[8x\] from both sides, we get
\[ \Rightarrow 6y\dfrac{{dy}}{{dx}} = - 8x\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{8x}}{{6y}} = - \dfrac{{4x}}{{3y}}\]…………………….\[\left( 1 \right)\]
Now, differentiating equation \[\left( 1 \right)\] with respect to \[x\], we get
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{d}{{dx}}\left( {\dfrac{{ - 4x}}{{3y}}} \right)\]
Now using quotient rule \[\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{{du}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}}\] on right side, we get
\[\begin{array}{l} \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{3y \times \dfrac{{d\left( { - 4x} \right)}}{{dx}} - \left( { - 4x} \right)\dfrac{{d\left( {3y} \right)}}{{dx}}}}{{{{\left( {3y} \right)}^2}}}\\ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{3y \times \left( { - 4} \right) - \left( { - 4x} \right) \times 3\dfrac{{dy}}{{dx}}}}{{9{y^2}}}\end{array}\]
Multiplying the terms, we get
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{ - 12y + 12x\dfrac{{dy}}{{dx}}}}{{9{y^2}}}\]
Next, replacing the value of \[\dfrac{{dy}}{{dx}}\] in above equation, we get
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{ - 12y + \left( {12x \times \dfrac{{ - 4x}}{{3y}}} \right)}}{{9{y^2}}}\]
Multiplying the terms, we get
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{ - 12y + \left( {\dfrac{{ - 16{x^2}}}{y}} \right)}}{{9{y^2}}}\]
Taking L.C.M in the numerator, we get
\[\begin{array}{l} \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{\dfrac{{ - 12{y^2} - 16{x^2}}}{y}}}{{9{y^2}}}\\ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{ - 12{y^2} - 16{x^2}}}{{9{y^3}}}\end{array}\]
We can further simplify the above value by taking \[ - 4\] common in numerator as,
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{ - 4\left( {3{y^2} + 4{x^2}} \right)}}{{9{y^3}}}\]
Substituting the value of the given equation \[4{x^2} + 3{y^2} = 6\] in above equation, we get
\[\begin{array}{l} \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{ - 4 \times 6}}{{9{y^3}}}\\ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{ - 8}}{{3{y^3}}}\end{array}\]
So the value of \[y''\] is \[\dfrac{{ - 8}}{{3{y^3}}}\].
Note:
Implicit differentiation is used when we have implicit functions where one function doesn’t lead to another one. Implicit differentiation is done by using the chain rule and viewing \[y\] as an implicit function of \[x\]. There are various case of implicit function which in which we have \[y\] equal to a function that contains \[x,y'\] or \[y'\] in similar way we can have \[x\] equal to a function that contains \[y,x'\] or just \[x'\].
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

