
Find the zeros of a polynomial \[{v^2} + 4\sqrt 3 v - 15 = 0\].
Answer
617.1k+ views
Hint: The polynomial is quadratic in degree two and has two roots. The roots of the polynomial \[a{x^2} + bx + c = 0\] are given by \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\].
Complete step-by-step answer:
Polynomials are expressions that are composed of algebraic terms. A polynomial is composed of constants, variables, and exponents. Examples of polynomials are \[5x + 6\], \[{x^2} + 6\], \[{x^{100}}\] and so on.
The degree of the polynomial is defined as the highest power to which the variable is raised in the expression. The degree of \[{x^{100}} - 1\] is 100.
A quadratic polynomial is a polynomial with a degree or highest power equal to two. An example of a quadratic polynomial is \[{x^2} + 6\].
The standard form of a quadratic polynomial is \[a{x^2} + bx + c\].
Zeroes of the polynomial are defined as the values of the variable at which the value of the polynomial becomes zero.
Any polynomial has as many roots equal to the degree of the polynomial. Hence, the quadratic polynomial has two roots. These two roots may be equal or unequal depending on the coefficients of the terms in the expression.
For the quadratic polynomial in its standard form, the zeroes of the polynomial is given by the formula as follows:
\[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}...........(1)\]
The roots of the equation \[{v^2} + 4\sqrt 3 v - 15 = 0\] are determined as follows:
\[v = \dfrac{{ - 4\sqrt 3 \pm \sqrt {{{(4\sqrt 3 )}^2} - 4(1)( - 15)} }}{{2(1)}}\]
\[v = \dfrac{{ - 4\sqrt 3 \pm \sqrt {48 + 60} }}{2}\]
\[v = \dfrac{{ - 4\sqrt 3 \pm \sqrt {108} }}{2}\]
The value of \[\sqrt {108} \] is \[6\sqrt 3 \]. Hence, we have:
\[v = \dfrac{{ - 4\sqrt 3 \pm 6\sqrt 3 }}{2}\]
\[v = - 2\sqrt 3 \pm 3\sqrt 3 \]
\[v = \sqrt 3 ;v = - 5\sqrt 3 \]
Hence, the zeroes are \[\sqrt 3 \] and \[ - 5\sqrt 3 \].
Note: You can also split \[4\sqrt 3 \] into \[5\sqrt 3 \] and \[ - \sqrt 3 \] and proceed by taking common terms to find the zeros of the given quadratic equation.
Complete step-by-step answer:
Polynomials are expressions that are composed of algebraic terms. A polynomial is composed of constants, variables, and exponents. Examples of polynomials are \[5x + 6\], \[{x^2} + 6\], \[{x^{100}}\] and so on.
The degree of the polynomial is defined as the highest power to which the variable is raised in the expression. The degree of \[{x^{100}} - 1\] is 100.
A quadratic polynomial is a polynomial with a degree or highest power equal to two. An example of a quadratic polynomial is \[{x^2} + 6\].
The standard form of a quadratic polynomial is \[a{x^2} + bx + c\].
Zeroes of the polynomial are defined as the values of the variable at which the value of the polynomial becomes zero.
Any polynomial has as many roots equal to the degree of the polynomial. Hence, the quadratic polynomial has two roots. These two roots may be equal or unequal depending on the coefficients of the terms in the expression.
For the quadratic polynomial in its standard form, the zeroes of the polynomial is given by the formula as follows:
\[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}...........(1)\]
The roots of the equation \[{v^2} + 4\sqrt 3 v - 15 = 0\] are determined as follows:
\[v = \dfrac{{ - 4\sqrt 3 \pm \sqrt {{{(4\sqrt 3 )}^2} - 4(1)( - 15)} }}{{2(1)}}\]
\[v = \dfrac{{ - 4\sqrt 3 \pm \sqrt {48 + 60} }}{2}\]
\[v = \dfrac{{ - 4\sqrt 3 \pm \sqrt {108} }}{2}\]
The value of \[\sqrt {108} \] is \[6\sqrt 3 \]. Hence, we have:
\[v = \dfrac{{ - 4\sqrt 3 \pm 6\sqrt 3 }}{2}\]
\[v = - 2\sqrt 3 \pm 3\sqrt 3 \]
\[v = \sqrt 3 ;v = - 5\sqrt 3 \]
Hence, the zeroes are \[\sqrt 3 \] and \[ - 5\sqrt 3 \].
Note: You can also split \[4\sqrt 3 \] into \[5\sqrt 3 \] and \[ - \sqrt 3 \] and proceed by taking common terms to find the zeros of the given quadratic equation.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

