
Find the volume of the cylinder in which height = 42cm and base radius =10cm.
Answer
508.5k+ views
Hint: We have to find the volume of the cylinder, using formula directly, the volume of a cylinder(V) having radius as R and height of cylinder as H will be \[V=\pi {{R}^{2}}H\] We know the values of R and H so on putting the values we will get the desired volume of the cylinder.
Complete step-by-step solution:
Given a cylinder which having a base radius as 10cm and height of cylinder is given as 42 cm and we have to find the volume of that cylinder. Actually the meaning of volume is the total space inside that object so it will be calculated by multiplying height with uniform cross section area so here the height will be H(42cm) and uniform cross section area will be \[\pi {{R}^{2}}\] so on multiplying both we get our volume will be \[V=\pi {{R}^{2}}H\]now on substituting value \[R=10cm\] and \[H=42cm\] we get volume expression as \[V=\pi \times {{(10)}^{2}}\times (42)\] approx the value of \[\pi \] to be 3.14 so on solving we get Volume equals to \[V=3.14\times {{(10)}^{2}}\times (42)\] further solving gives value of volume to be \[13188c{{m}^{3}}\] now here the volume is in \[c{{m}^{3}}\] so to convert this in \[{{m}^{3}}\] divide it by \[{{10}^{6}}\] , so we get value of volume to be \[0.013188{{m}^{3}}\].
Hence the volume of cylinder will be \[0.013188{{m}^{3}}\]
Note: If we are asked to find the total surface area of this cylinder then its formula will be \[TSA=2\pi RH\], here we just want the curved area of the cylinder so we multiply circumference \[2\pi R\]
With the height of cylinder H, so on putting values in formula \[TSA=2\pi RH\], we get expression as
\[TSA=2\pi (10)(42)\] which on solving gives \[TSA=2637.6c{{m}^{2}}\]or dividing it by \[{{10}^{4}}\] we got TSA in
Terms of \[{{m}^{2}}\] as \[TSA=0.26376{{m}^{2}}\]
Complete step-by-step solution:

Given a cylinder which having a base radius as 10cm and height of cylinder is given as 42 cm and we have to find the volume of that cylinder. Actually the meaning of volume is the total space inside that object so it will be calculated by multiplying height with uniform cross section area so here the height will be H(42cm) and uniform cross section area will be \[\pi {{R}^{2}}\] so on multiplying both we get our volume will be \[V=\pi {{R}^{2}}H\]now on substituting value \[R=10cm\] and \[H=42cm\] we get volume expression as \[V=\pi \times {{(10)}^{2}}\times (42)\] approx the value of \[\pi \] to be 3.14 so on solving we get Volume equals to \[V=3.14\times {{(10)}^{2}}\times (42)\] further solving gives value of volume to be \[13188c{{m}^{3}}\] now here the volume is in \[c{{m}^{3}}\] so to convert this in \[{{m}^{3}}\] divide it by \[{{10}^{6}}\] , so we get value of volume to be \[0.013188{{m}^{3}}\].
Hence the volume of cylinder will be \[0.013188{{m}^{3}}\]
Note: If we are asked to find the total surface area of this cylinder then its formula will be \[TSA=2\pi RH\], here we just want the curved area of the cylinder so we multiply circumference \[2\pi R\]
With the height of cylinder H, so on putting values in formula \[TSA=2\pi RH\], we get expression as
\[TSA=2\pi (10)(42)\] which on solving gives \[TSA=2637.6c{{m}^{2}}\]or dividing it by \[{{10}^{4}}\] we got TSA in
Terms of \[{{m}^{2}}\] as \[TSA=0.26376{{m}^{2}}\]
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Gautam Buddha was born in the year A581 BC B563 BC class 10 social science CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 10 biology CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE
