
How do you find the vertex, focus and directrix of the parabola ${\left( {x + \dfrac{1}{2}} \right)^2} = 4\left( {y - 3} \right)?$
Answer
467.7k+ views
Hint: In this question, we are going to find the vertex, focus and directrix of the parabola for the given equation.
The given equation is of the form of a parabola and now we are going to compare the given values to the standard form of a parabola.
By comparing those we get the value of vertex, focus and directrix of the parabola.
Hence, we can get the required result.
Formula used: If the parabola has a horizontal axis, the standard form of the equation of the parabola is
${(y - k)^2} = 4p(x - h)$, where $p \ne 0$
The vertex of this parabola is at $\left( {h,k} \right)$.
The focus is at $\left( {h + p,k} \right)$
The directrix is the line $x = h - p$
Complete Step by Step Solution:
In this question, we are going to find the vertex, focus and directrix for the given parabolic equation.
First write the given equation and mark it as $\left( 1 \right)$
$ \Rightarrow {\left( {x + \dfrac{1}{2}} \right)^2} = 4\left( {y - 3} \right)...\left( 1 \right)$
The given equation is of the parabolic form
We compare this equation to the standard form of the parabolic equation.
Here $p = 2$
The vertex V of the parabola is $\left( {\dfrac{{ - 1}}{2},3} \right)$
The focus of the parabola is $\left( {\dfrac{{ - 1}}{2},4} \right)$
The directrix of the parabola is $\left( {3 - 1} \right) = 2$
Thus the vertex, focus and directrix of the parabola are $\left( {\dfrac{{ - 1}}{2},3} \right)$, $\left( {\dfrac{{ - 1}}{2},4} \right)$ and $2$ respectively.
Note: The parabola has two real foci situated on its axis one of which is the focus S and the other lies at infinity. The corresponding directrix is also at infinity.
A parabola is a curve where any point is at an equal distance from
A fixed point and a fixed straight line
The given equation is of the form of a parabola and now we are going to compare the given values to the standard form of a parabola.
By comparing those we get the value of vertex, focus and directrix of the parabola.
Hence, we can get the required result.
Formula used: If the parabola has a horizontal axis, the standard form of the equation of the parabola is
${(y - k)^2} = 4p(x - h)$, where $p \ne 0$
The vertex of this parabola is at $\left( {h,k} \right)$.
The focus is at $\left( {h + p,k} \right)$
The directrix is the line $x = h - p$
Complete Step by Step Solution:
In this question, we are going to find the vertex, focus and directrix for the given parabolic equation.
First write the given equation and mark it as $\left( 1 \right)$
$ \Rightarrow {\left( {x + \dfrac{1}{2}} \right)^2} = 4\left( {y - 3} \right)...\left( 1 \right)$
The given equation is of the parabolic form
We compare this equation to the standard form of the parabolic equation.
Here $p = 2$
The vertex V of the parabola is $\left( {\dfrac{{ - 1}}{2},3} \right)$
The focus of the parabola is $\left( {\dfrac{{ - 1}}{2},4} \right)$
The directrix of the parabola is $\left( {3 - 1} \right) = 2$
Thus the vertex, focus and directrix of the parabola are $\left( {\dfrac{{ - 1}}{2},3} \right)$, $\left( {\dfrac{{ - 1}}{2},4} \right)$ and $2$ respectively.
Note: The parabola has two real foci situated on its axis one of which is the focus S and the other lies at infinity. The corresponding directrix is also at infinity.
A parabola is a curve where any point is at an equal distance from
A fixed point and a fixed straight line
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

What is the difference between superposition and e class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
