
Find the vector equation of the coordinate planes.
Answer
572.1k+ views
Hint: We know that for a XY plane z coordinate is 0, for an YZ plane x coordinate is 0 and for a ZX plane y coordinate is 0.
Complete step-by-step answer:
Observe the figure given below.
From the figure above we observe that the Z-axis is perpendicular to the XY plane, Y-axis is perpendicular to the XZ plane and X-axis is perpendicular to YZ plane.
Let \[\vec r = a\mathop i\limits^ \wedge + b\mathop j\limits^ \wedge + c\mathop k\limits^ \wedge \] is a position vector in the plane.
Let \[\mathop i\limits^ \wedge \] be the unit vector parallel to the X-axis, \[\mathop j\limits^ \wedge \] be the unit vector parallel to the Y-axis and \[\mathop k\limits^ \wedge \] be the unit vector parallel to Z-axis respectively.
For an XY plane:
Unit vector parallel to the z axis is normal to the plane. That is their dot product with XY plane is equal to zero. So the equation of the plane is \[\vec r.\mathop k\limits^ \wedge = 0\] or we know that a point lying on this plane has z coordinate is 0. So the equation can also be written as \[\vec r = a\mathop i\limits^ \wedge + b\mathop j\limits^ \wedge \].
Similarly for the other two planes we can write.
For an YZ plane:
Unit vector parallel to the x axis is normal to the plane. That is, their dot product with the YZ plane is equal to zero. So the equation of the plane is \[\vec r.\mathop i\limits^ \wedge = 0\] or we know that a point lying on this plane has x coordinate is 0. So the equation can also be written as \[\vec r = b\mathop j\limits^ \wedge + c\mathop k\limits^ \wedge \].
For an XZ plane:
Unit vector parallel to the z axis is normal to the plane. That is their dot product with XY plane is equal to zero. So the equation of the plane is \[\vec r.\mathop j\limits^ \wedge = 0\] or we know that a point lying on this plane has z coordinate is 0. So the equation can also be written as \[\vec r = a\mathop i\limits^ \wedge + c\mathop k\limits^ \wedge \].
Note: Note that a dot product of a position vector with unit vector parallel to the plane is taken zero here because there is an angle of \[{90^ \circ }\] in between them. Unit vector is having value 1.
Complete step-by-step answer:
Observe the figure given below.
From the figure above we observe that the Z-axis is perpendicular to the XY plane, Y-axis is perpendicular to the XZ plane and X-axis is perpendicular to YZ plane.
Let \[\vec r = a\mathop i\limits^ \wedge + b\mathop j\limits^ \wedge + c\mathop k\limits^ \wedge \] is a position vector in the plane.
Let \[\mathop i\limits^ \wedge \] be the unit vector parallel to the X-axis, \[\mathop j\limits^ \wedge \] be the unit vector parallel to the Y-axis and \[\mathop k\limits^ \wedge \] be the unit vector parallel to Z-axis respectively.
For an XY plane:
Unit vector parallel to the z axis is normal to the plane. That is their dot product with XY plane is equal to zero. So the equation of the plane is \[\vec r.\mathop k\limits^ \wedge = 0\] or we know that a point lying on this plane has z coordinate is 0. So the equation can also be written as \[\vec r = a\mathop i\limits^ \wedge + b\mathop j\limits^ \wedge \].
Similarly for the other two planes we can write.
For an YZ plane:
Unit vector parallel to the x axis is normal to the plane. That is, their dot product with the YZ plane is equal to zero. So the equation of the plane is \[\vec r.\mathop i\limits^ \wedge = 0\] or we know that a point lying on this plane has x coordinate is 0. So the equation can also be written as \[\vec r = b\mathop j\limits^ \wedge + c\mathop k\limits^ \wedge \].
For an XZ plane:
Unit vector parallel to the z axis is normal to the plane. That is their dot product with XY plane is equal to zero. So the equation of the plane is \[\vec r.\mathop j\limits^ \wedge = 0\] or we know that a point lying on this plane has z coordinate is 0. So the equation can also be written as \[\vec r = a\mathop i\limits^ \wedge + c\mathop k\limits^ \wedge \].
Note: Note that a dot product of a position vector with unit vector parallel to the plane is taken zero here because there is an angle of \[{90^ \circ }\] in between them. Unit vector is having value 1.
Recently Updated Pages
Which cell organelles are present in white blood C class 11 biology CBSE

What is the molecular geometry of BrF4 A square planar class 11 chemistry CBSE

How can you explain that CCl4 has no dipole moment class 11 chemistry CBSE

Which will undergo SN2 reaction fastest among the following class 11 chemistry CBSE

The values of mass m for which the 100 kg block does class 11 physics CBSE

Why are voluntary muscles called striated muscles class 11 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

State the laws of reflection of light

Difference Between Prokaryotic Cells and Eukaryotic Cells

Show that total energy of a freely falling body remains class 11 physics CBSE

