
Find the value(s) of k so that the quadratic equation $3{{x}^{2}}-2kx+12=0$ has equal roots.
Answer
574.8k+ views
Hint: We will first find the roots of the given quadratic equation by using the formula $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$, and then equate them, since the roots are equal, to find all the possible values of k.
We know that the roots of a quadratic equation $a{{x}^{2}}+bx+c=0$ can be found by using the formula $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
Complete step-by-step solution:
The given equation is $3{{x}^{2}}-2kx+12=0$
Then the roots can be found by
$\begin{align}
& x=\dfrac{-\left( -2k \right)\pm \sqrt{{{\left( -2k \right)}^{2}}-4\cdot 3\cdot 12}}{2\cdot 3} \\
& =\dfrac{2k\pm \sqrt{4{{k}^{2}}-144}}{6} \\
& =\dfrac{2k\pm \sqrt{4\left( {{k}^{2}}-36 \right)}}{6} \\
& =\dfrac{2k\pm 2\sqrt{\left( {{k}^{2}}-36 \right)}}{6} \\
& =\dfrac{k\pm \sqrt{\left( {{k}^{2}}-36 \right)}}{3}
\end{align}$
The roots are $\dfrac{k+\sqrt{\left( {{k}^{2}}-36 \right)}}{3}$ and $\dfrac{k-\sqrt{\left( {{k}^{2}}-36 \right)}}{3}$.
It is known that the roots are equal.
Thus, equating these roots, we get
\[\begin{align}
& \text{ }\dfrac{k+\sqrt{\left( {{k}^{2}}-36 \right)}}{3}=\dfrac{k-\sqrt{\left( {{k}^{2}}-36 \right)}}{3} \\
& \Rightarrow k+\sqrt{\left( {{k}^{2}}-36 \right)}=k-\sqrt{\left( {{k}^{2}}-36 \right)} \\
& \Rightarrow \sqrt{\left( {{k}^{2}}-36 \right)}=-\sqrt{\left( {{k}^{2}}-36 \right)} \\
& \Rightarrow 2\sqrt{\left( {{k}^{2}}-36 \right)}=0 \\
& \Rightarrow \sqrt{\left( {{k}^{2}}-36 \right)}=0 \\
\end{align}\]
Squaring, we get
\[\begin{align}
& {{\left[ \sqrt{\left( {{k}^{2}}-36 \right)} \right]}^{2}}=0 \\
& \Rightarrow {{k}^{2}}-36=0 \\
& \Rightarrow {{k}^{2}}=36 \\
& \Rightarrow k=\pm 6 \\
\end{align}\]
Hence, the value of k is $\pm 6$.
Note: Here, we can not solve this question by using the method of completing the square or by factorizing the middle terms into a product of two linear factors and then equating those linear factors to zero, since we do not know the numeric value of b, that is, it is a variable, in the given quadratic equation $3{{x}^{2}}-2kx+12=0$ of form $a{{x}^{2}}+bx+c=0$. Another way to solve this question is to directly put the value of discriminant as zero. We know that when the roots of a quadratic equation$a{{x}^{2}}+bx+c=0$ are equal, the value of $D={{b}^{2}}-4ac=0$. Hence, in this question, we can directly write that
$\begin{align}
& {{\left( -2k \right)}^{2}}-4\cdot 3\cdot 12=0 \\
& \Rightarrow 4{{k}^{2}}-144=0 \\
& \Rightarrow {{k}^{2}}-36=0 \\
& \Rightarrow k=\pm 6 \\
\end{align}$
We know that the roots of a quadratic equation $a{{x}^{2}}+bx+c=0$ can be found by using the formula $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
Complete step-by-step solution:
The given equation is $3{{x}^{2}}-2kx+12=0$
Then the roots can be found by
$\begin{align}
& x=\dfrac{-\left( -2k \right)\pm \sqrt{{{\left( -2k \right)}^{2}}-4\cdot 3\cdot 12}}{2\cdot 3} \\
& =\dfrac{2k\pm \sqrt{4{{k}^{2}}-144}}{6} \\
& =\dfrac{2k\pm \sqrt{4\left( {{k}^{2}}-36 \right)}}{6} \\
& =\dfrac{2k\pm 2\sqrt{\left( {{k}^{2}}-36 \right)}}{6} \\
& =\dfrac{k\pm \sqrt{\left( {{k}^{2}}-36 \right)}}{3}
\end{align}$
The roots are $\dfrac{k+\sqrt{\left( {{k}^{2}}-36 \right)}}{3}$ and $\dfrac{k-\sqrt{\left( {{k}^{2}}-36 \right)}}{3}$.
It is known that the roots are equal.
Thus, equating these roots, we get
\[\begin{align}
& \text{ }\dfrac{k+\sqrt{\left( {{k}^{2}}-36 \right)}}{3}=\dfrac{k-\sqrt{\left( {{k}^{2}}-36 \right)}}{3} \\
& \Rightarrow k+\sqrt{\left( {{k}^{2}}-36 \right)}=k-\sqrt{\left( {{k}^{2}}-36 \right)} \\
& \Rightarrow \sqrt{\left( {{k}^{2}}-36 \right)}=-\sqrt{\left( {{k}^{2}}-36 \right)} \\
& \Rightarrow 2\sqrt{\left( {{k}^{2}}-36 \right)}=0 \\
& \Rightarrow \sqrt{\left( {{k}^{2}}-36 \right)}=0 \\
\end{align}\]
Squaring, we get
\[\begin{align}
& {{\left[ \sqrt{\left( {{k}^{2}}-36 \right)} \right]}^{2}}=0 \\
& \Rightarrow {{k}^{2}}-36=0 \\
& \Rightarrow {{k}^{2}}=36 \\
& \Rightarrow k=\pm 6 \\
\end{align}\]
Hence, the value of k is $\pm 6$.
Note: Here, we can not solve this question by using the method of completing the square or by factorizing the middle terms into a product of two linear factors and then equating those linear factors to zero, since we do not know the numeric value of b, that is, it is a variable, in the given quadratic equation $3{{x}^{2}}-2kx+12=0$ of form $a{{x}^{2}}+bx+c=0$. Another way to solve this question is to directly put the value of discriminant as zero. We know that when the roots of a quadratic equation$a{{x}^{2}}+bx+c=0$ are equal, the value of $D={{b}^{2}}-4ac=0$. Hence, in this question, we can directly write that
$\begin{align}
& {{\left( -2k \right)}^{2}}-4\cdot 3\cdot 12=0 \\
& \Rightarrow 4{{k}^{2}}-144=0 \\
& \Rightarrow {{k}^{2}}-36=0 \\
& \Rightarrow k=\pm 6 \\
\end{align}$
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

