Answer
Verified
390.6k+ views
Hint: While solving this question you should know about the general trigonometric formulas. In this problem we will use the general formulas of trigonometry to convert the value of any angle in the form of other angles. And thus we will get the solutions.
Complete step by step answer:
According to our question, we have to find the values of some trigonometric functions. We will look at them one by one. Let us start with part 1.
1. $\sin 7{{\dfrac{1}{2}}^{\circ }}$
From the properties of trigonometric identities, we know that,
$\cos A=1-2{{\sin }^{2}}\dfrac{A}{2}$
So, it means that,
$\begin{align}
& 1-\cos A=2{{\sin }^{2}}\dfrac{A}{2} \\
& \Rightarrow 2{{\sin }^{2}}7{{\dfrac{1}{2}}^{\circ }}=1-\cos {{15}^{\circ }} \\
& \Rightarrow {{\sin }^{2}}7{{\dfrac{1}{2}}^{\circ }}=\dfrac{1-\cos {{15}^{\circ }}}{2} \\
\end{align}$
Now, if we solve this then we will get that,
$\begin{align}
& {{\sin }^{2}}7{{\dfrac{1}{2}}^{\circ }}=\dfrac{1-\dfrac{\sqrt{3}+1}{2\sqrt{2}}}{2} \\
& \Rightarrow {{\sin }^{2}}7{{\dfrac{1}{2}}^{\circ }}=\dfrac{2\sqrt{2}-\sqrt{3}-1}{4\sqrt{2}} \\
& \Rightarrow \sin 7{{\dfrac{1}{2}}^{\circ }}=\sqrt{\dfrac{4-\sqrt{6}-\sqrt{2}}{8}} \\
\end{align}$
(Since $\sin 7{{\dfrac{1}{2}}^{\circ }}$is positive, we can say)
$\Rightarrow \sin 7{{\dfrac{1}{2}}^{\circ }}=\dfrac{\sqrt{4-\sqrt{6}-\sqrt{2}}}{2\sqrt{2}}$
2. $\cos 7{{\dfrac{1}{2}}^{\circ }}$
Since we know that,
$\cos A=2{{\cos }^{2}}\dfrac{A}{2}-1$
Therefore,
$\begin{align}
& \Rightarrow 2{{\cos }^{2}}\dfrac{A}{2}=\cos A+1 \\
& \Rightarrow {{\cos }^{2}}7{{\dfrac{1}{2}}^{\circ }}=\dfrac{1+\cos {{15}^{\circ }}}{2} \\
& \Rightarrow {{\cos }^{2}}7{{\dfrac{1}{2}}^{\circ }}=\dfrac{1+\dfrac{\sqrt{3}+1}{2\sqrt{2}}}{2} \\
& \Rightarrow {{\cos }^{2}}7{{\dfrac{1}{2}}^{\circ }}=\dfrac{2\sqrt{2}+\sqrt{3}+1}{4\sqrt{2}} \\
\end{align}$
If we solve this then we get,
$\Rightarrow {{\cos }^{2}}7{{\dfrac{1}{2}}^{\circ }}=\dfrac{\sqrt{4+\sqrt{6}+\sqrt{2}}}{2\sqrt{2}}$
3. $\tan 22{{\dfrac{1}{2}}^{\circ }}$
Since we know that,
$\begin{align}
& \tan \dfrac{A}{2}=\sqrt{\dfrac{1-\cos A}{1+\cos A}} \\
& \Rightarrow \tan 22{{\dfrac{1}{2}}^{\circ }}=\sqrt{\dfrac{1-\cos {{45}^{\circ }}}{1+\cos {{45}^{\circ }}}} \\
& \Rightarrow \tan 22{{\dfrac{1}{2}}^{\circ }}=\sqrt{\dfrac{1-\dfrac{1}{\sqrt{2}}}{1+\dfrac{1}{\sqrt{2}}}} \\
\end{align}$
If we solve this we will get as follows,
$\begin{align}
& \Rightarrow \tan 22{{\dfrac{1}{2}}^{\circ }}=\sqrt{\dfrac{\sqrt{2}-1}{\sqrt{2}+1}} \\
& \Rightarrow \tan 22{{\dfrac{1}{2}}^{\circ }}=\sqrt{\dfrac{\sqrt{2}-1}{\sqrt{2}+1}\times \dfrac{\sqrt{2}-1}{\sqrt{2}-1}} \\
& \Rightarrow \tan 22{{\dfrac{1}{2}}^{\circ }}=\sqrt{\dfrac{{{\left( \sqrt{2}-1 \right)}^{2}}}{2-1}} \\
& \Rightarrow \tan 22{{\dfrac{1}{2}}^{\circ }}=\dfrac{\sqrt{2}-1}{1}=\sqrt{2}-1 \\
\end{align}$
4. $\tan 11{{\dfrac{1}{4}}^{\circ }}$
We know that,
$\begin{align}
& \tan \theta =\dfrac{\sin \theta }{\cos \theta } \\
& \Rightarrow \tan 11{{\dfrac{1}{4}}^{\circ }}=\dfrac{\sin 11{{\dfrac{1}{4}}^{\circ }}}{\cos 11{{\dfrac{1}{4}}^{\circ }}} \\
& \Rightarrow \tan 11{{\dfrac{1}{4}}^{\circ }}=\dfrac{\sin 11{{\dfrac{1}{4}}^{\circ }}}{\cos 11{{\dfrac{1}{4}}^{\circ }}}\times \dfrac{2\sin 11{{\dfrac{1}{4}}^{\circ }}}{2\sin 11{{\dfrac{1}{4}}^{\circ }}} \\
& \Rightarrow \tan 11{{\dfrac{1}{4}}^{\circ }}=\dfrac{2{{\sin }^{2}}11{{\dfrac{1}{4}}^{\circ }}}{2\sin 11{{\dfrac{1}{4}}^{\circ }}\cos 11{{\dfrac{1}{4}}^{\circ }}} \\
\end{align}$
Since we know that,
$\begin{align}
& 2{{\sin }^{2}}A=1-\cos 2A \\
& \sin 2A=2\sin A\cos A \\
\end{align}$
So, we will substitute these values in the above equation as follows and then we get,
$\begin{align}
& =\dfrac{1-\cos 22{{\dfrac{1}{2}}^{\circ }}}{\sin 22{{\dfrac{1}{2}}^{\circ }}} \\
& =\dfrac{1-\sqrt{\dfrac{1+\cos {{45}^{\circ }}}{2}}}{\sqrt{\dfrac{1-\cos {{45}^{\circ }}}{2}}} \\
& =\dfrac{\sqrt{2}-\sqrt{1+\dfrac{1}{\sqrt{2}}}}{\sqrt{1-\dfrac{1}{\sqrt{2}}}} \\
\end{align}$
For getting our final answer, we will solve this again like this,
$\begin{align}
& =\dfrac{\sqrt{2\sqrt{2}}-\sqrt{2\sqrt{2}+1}}{\sqrt{\sqrt{2}-1}} \\
& =\dfrac{\sqrt{2\sqrt{2}}-\sqrt{2\sqrt{2}+1}}{\sqrt{\sqrt{2}-1}}\times \dfrac{\sqrt{2\sqrt{2}+1}}{\sqrt{2\sqrt{2}+1}} \\
& =\dfrac{\sqrt{2\sqrt{2}}.\sqrt{2\sqrt{2}+1}-\sqrt{{{\left( \sqrt{2}+1 \right)}^{2}}}}{\sqrt{\left( \sqrt{2}+1 \right)\sqrt{2}-1}} \\
& =\dfrac{\sqrt{2\sqrt{2}\left( \sqrt{2}+1 \right)}-\left( \sqrt{2}+1 \right)}{\sqrt{2}-1} \\
& =\sqrt{4+2\sqrt{2}}-\left( \sqrt{2}+1 \right) \\
\end{align}$
So, these are the final answers that we get for the given values.
Note: While solving these types of questions you should be careful about the values of tan, sin, cos at the desired angles because these are directly not defined. We have to calculate these by using different formulas.
Complete step by step answer:
According to our question, we have to find the values of some trigonometric functions. We will look at them one by one. Let us start with part 1.
1. $\sin 7{{\dfrac{1}{2}}^{\circ }}$
From the properties of trigonometric identities, we know that,
$\cos A=1-2{{\sin }^{2}}\dfrac{A}{2}$
So, it means that,
$\begin{align}
& 1-\cos A=2{{\sin }^{2}}\dfrac{A}{2} \\
& \Rightarrow 2{{\sin }^{2}}7{{\dfrac{1}{2}}^{\circ }}=1-\cos {{15}^{\circ }} \\
& \Rightarrow {{\sin }^{2}}7{{\dfrac{1}{2}}^{\circ }}=\dfrac{1-\cos {{15}^{\circ }}}{2} \\
\end{align}$
Now, if we solve this then we will get that,
$\begin{align}
& {{\sin }^{2}}7{{\dfrac{1}{2}}^{\circ }}=\dfrac{1-\dfrac{\sqrt{3}+1}{2\sqrt{2}}}{2} \\
& \Rightarrow {{\sin }^{2}}7{{\dfrac{1}{2}}^{\circ }}=\dfrac{2\sqrt{2}-\sqrt{3}-1}{4\sqrt{2}} \\
& \Rightarrow \sin 7{{\dfrac{1}{2}}^{\circ }}=\sqrt{\dfrac{4-\sqrt{6}-\sqrt{2}}{8}} \\
\end{align}$
(Since $\sin 7{{\dfrac{1}{2}}^{\circ }}$is positive, we can say)
$\Rightarrow \sin 7{{\dfrac{1}{2}}^{\circ }}=\dfrac{\sqrt{4-\sqrt{6}-\sqrt{2}}}{2\sqrt{2}}$
2. $\cos 7{{\dfrac{1}{2}}^{\circ }}$
Since we know that,
$\cos A=2{{\cos }^{2}}\dfrac{A}{2}-1$
Therefore,
$\begin{align}
& \Rightarrow 2{{\cos }^{2}}\dfrac{A}{2}=\cos A+1 \\
& \Rightarrow {{\cos }^{2}}7{{\dfrac{1}{2}}^{\circ }}=\dfrac{1+\cos {{15}^{\circ }}}{2} \\
& \Rightarrow {{\cos }^{2}}7{{\dfrac{1}{2}}^{\circ }}=\dfrac{1+\dfrac{\sqrt{3}+1}{2\sqrt{2}}}{2} \\
& \Rightarrow {{\cos }^{2}}7{{\dfrac{1}{2}}^{\circ }}=\dfrac{2\sqrt{2}+\sqrt{3}+1}{4\sqrt{2}} \\
\end{align}$
If we solve this then we get,
$\Rightarrow {{\cos }^{2}}7{{\dfrac{1}{2}}^{\circ }}=\dfrac{\sqrt{4+\sqrt{6}+\sqrt{2}}}{2\sqrt{2}}$
3. $\tan 22{{\dfrac{1}{2}}^{\circ }}$
Since we know that,
$\begin{align}
& \tan \dfrac{A}{2}=\sqrt{\dfrac{1-\cos A}{1+\cos A}} \\
& \Rightarrow \tan 22{{\dfrac{1}{2}}^{\circ }}=\sqrt{\dfrac{1-\cos {{45}^{\circ }}}{1+\cos {{45}^{\circ }}}} \\
& \Rightarrow \tan 22{{\dfrac{1}{2}}^{\circ }}=\sqrt{\dfrac{1-\dfrac{1}{\sqrt{2}}}{1+\dfrac{1}{\sqrt{2}}}} \\
\end{align}$
If we solve this we will get as follows,
$\begin{align}
& \Rightarrow \tan 22{{\dfrac{1}{2}}^{\circ }}=\sqrt{\dfrac{\sqrt{2}-1}{\sqrt{2}+1}} \\
& \Rightarrow \tan 22{{\dfrac{1}{2}}^{\circ }}=\sqrt{\dfrac{\sqrt{2}-1}{\sqrt{2}+1}\times \dfrac{\sqrt{2}-1}{\sqrt{2}-1}} \\
& \Rightarrow \tan 22{{\dfrac{1}{2}}^{\circ }}=\sqrt{\dfrac{{{\left( \sqrt{2}-1 \right)}^{2}}}{2-1}} \\
& \Rightarrow \tan 22{{\dfrac{1}{2}}^{\circ }}=\dfrac{\sqrt{2}-1}{1}=\sqrt{2}-1 \\
\end{align}$
4. $\tan 11{{\dfrac{1}{4}}^{\circ }}$
We know that,
$\begin{align}
& \tan \theta =\dfrac{\sin \theta }{\cos \theta } \\
& \Rightarrow \tan 11{{\dfrac{1}{4}}^{\circ }}=\dfrac{\sin 11{{\dfrac{1}{4}}^{\circ }}}{\cos 11{{\dfrac{1}{4}}^{\circ }}} \\
& \Rightarrow \tan 11{{\dfrac{1}{4}}^{\circ }}=\dfrac{\sin 11{{\dfrac{1}{4}}^{\circ }}}{\cos 11{{\dfrac{1}{4}}^{\circ }}}\times \dfrac{2\sin 11{{\dfrac{1}{4}}^{\circ }}}{2\sin 11{{\dfrac{1}{4}}^{\circ }}} \\
& \Rightarrow \tan 11{{\dfrac{1}{4}}^{\circ }}=\dfrac{2{{\sin }^{2}}11{{\dfrac{1}{4}}^{\circ }}}{2\sin 11{{\dfrac{1}{4}}^{\circ }}\cos 11{{\dfrac{1}{4}}^{\circ }}} \\
\end{align}$
Since we know that,
$\begin{align}
& 2{{\sin }^{2}}A=1-\cos 2A \\
& \sin 2A=2\sin A\cos A \\
\end{align}$
So, we will substitute these values in the above equation as follows and then we get,
$\begin{align}
& =\dfrac{1-\cos 22{{\dfrac{1}{2}}^{\circ }}}{\sin 22{{\dfrac{1}{2}}^{\circ }}} \\
& =\dfrac{1-\sqrt{\dfrac{1+\cos {{45}^{\circ }}}{2}}}{\sqrt{\dfrac{1-\cos {{45}^{\circ }}}{2}}} \\
& =\dfrac{\sqrt{2}-\sqrt{1+\dfrac{1}{\sqrt{2}}}}{\sqrt{1-\dfrac{1}{\sqrt{2}}}} \\
\end{align}$
For getting our final answer, we will solve this again like this,
$\begin{align}
& =\dfrac{\sqrt{2\sqrt{2}}-\sqrt{2\sqrt{2}+1}}{\sqrt{\sqrt{2}-1}} \\
& =\dfrac{\sqrt{2\sqrt{2}}-\sqrt{2\sqrt{2}+1}}{\sqrt{\sqrt{2}-1}}\times \dfrac{\sqrt{2\sqrt{2}+1}}{\sqrt{2\sqrt{2}+1}} \\
& =\dfrac{\sqrt{2\sqrt{2}}.\sqrt{2\sqrt{2}+1}-\sqrt{{{\left( \sqrt{2}+1 \right)}^{2}}}}{\sqrt{\left( \sqrt{2}+1 \right)\sqrt{2}-1}} \\
& =\dfrac{\sqrt{2\sqrt{2}\left( \sqrt{2}+1 \right)}-\left( \sqrt{2}+1 \right)}{\sqrt{2}-1} \\
& =\sqrt{4+2\sqrt{2}}-\left( \sqrt{2}+1 \right) \\
\end{align}$
So, these are the final answers that we get for the given values.
Note: While solving these types of questions you should be careful about the values of tan, sin, cos at the desired angles because these are directly not defined. We have to calculate these by using different formulas.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE