
Find the value of x if \[{\tan ^{ - 1}}\left( {\dfrac{{x - 3}}{{x - 4}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{x + 3}}{{x + 4}}} \right) = \dfrac{\pi }{4}\].
Answer
568.5k+ views
Hint: Here, we have to solve the given equation and find the value of \[x\]. We will use the formula for the sum of trigonometric inverse of two angles to simplify the equation. Then, you need to solve the equation for \[x\].
Formula Used: We will use the formula \[{\tan ^{ - 1}}A + {\tan ^{ - 1}}B = {\tan ^{ - 1}}\left( {\dfrac{{A + B}}{{1 - AB}}} \right)\] and \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\].
Complete step-by-step answer:
We will use the formula for the sum of trigonometric inverse of two angles to simplify the equation.
We know that the sum of trigonometric inverse of two angles \[A\] and \[B\] is given by \[{\tan ^{ - 1}}A + {\tan ^{ - 1}}B = {\tan ^{ - 1}}\left( {\dfrac{{A + B}}{{1 - AB}}} \right)\].
Substituting \[A = \dfrac{{x - 3}}{{x - 4}}\] and \[B = \dfrac{{x + 3}}{{x + 4}}\] in the formula, we get
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{x - 3}}{{x - 4}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{x + 3}}{{x + 4}}} \right) = {\tan ^{ - 1}}\left[ {\dfrac{{\dfrac{{x - 3}}{{x - 4}} + \dfrac{{x + 3}}{{x + 4}}}}{{1 - \left( {\dfrac{{x - 3}}{{x - 4}}} \right)\left( {\dfrac{{x + 3}}{{x + 4}}} \right)}}} \right]\]
Substituting \[{\tan ^{ - 1}}\left( {\dfrac{{x - 3}}{{x - 4}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{x + 3}}{{x + 4}}} \right) = \dfrac{\pi }{4}\] in the equation, we get
\[ \Rightarrow \dfrac{\pi }{4} = {\tan ^{ - 1}}\left[ {\dfrac{{\dfrac{{x - 3}}{{x - 4}} + \dfrac{{x + 3}}{{x + 4}}}}{{1 - \left( {\dfrac{{x - 3}}{{x - 4}}} \right)\left( {\dfrac{{x + 3}}{{x + 4}}} \right)}}} \right]\]
Now, we will simplify the expression.
Rewriting the expression, we get
\[ \Rightarrow \dfrac{\pi }{4} = {\tan ^{ - 1}}\left[ {\dfrac{{\dfrac{{x - 3}}{{x - 4}} + \dfrac{{x + 3}}{{x + 4}}}}{{1 - \dfrac{{\left( {x - 3} \right)\left( {x + 3} \right)}}{{\left( {x - 4} \right)\left( {x + 4} \right)}}}}} \right]\]
We know that the product of sum and difference of two numbers is given by the algebraic identity \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\].
Using the algebraic identity to simplify the expression, we get
\[ \Rightarrow \dfrac{\pi }{4} = {\tan ^{ - 1}}\left[ {\dfrac{{\dfrac{{x - 3}}{{x - 4}} + \dfrac{{x + 3}}{{x + 4}}}}{{1 - \dfrac{{{x^2} - 9}}{{{x^2} - 16}}}}} \right]\]
Taking the L.C.M., we get
\[ \Rightarrow \dfrac{\pi }{4} = {\tan ^{ - 1}}\left[ {\dfrac{{\dfrac{{\left( {x - 3} \right)\left( {x + 4} \right) + \left( {x + 3} \right)\left( {x - 4} \right)}}{{\left( {x - 4} \right)\left( {x + 4} \right)}}}}{{\dfrac{{{x^2} - 16 - {x^2} + 9}}{{{x^2} - 16}}}}} \right]\]
Using the algebraic identity \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\] again, we get
\[ \Rightarrow \dfrac{\pi }{4} = {\tan ^{ - 1}}\left[ {\dfrac{{\dfrac{{\left( {x - 3} \right)\left( {x + 4} \right) + \left( {x + 3} \right)\left( {x - 4} \right)}}{{{x^2} - 16}}}}{{\dfrac{{{x^2} - 16 - {x^2} + 9}}{{{x^2} - 16}}}}} \right]\]
Simplifying the expression, we get
\[\begin{array}{l} \Rightarrow \dfrac{\pi }{4} = {\tan ^{ - 1}}\left[ {\dfrac{{\left( {x - 3} \right)\left( {x + 4} \right) + \left( {x + 3} \right)\left( {x - 4} \right)}}{{{x^2} - 16 - {x^2} + 9}}} \right]\\ \Rightarrow \dfrac{\pi }{4} = {\tan ^{ - 1}}\left[ {\dfrac{{\left( {x - 3} \right)\left( {x + 4} \right) + \left( {x + 3} \right)\left( {x - 4} \right)}}{{ - 7}}} \right]\end{array}\]
Multiplying the terms of the expression using the distributive property of multiplication, we get
\[ \Rightarrow \dfrac{\pi }{4} = {\tan ^{ - 1}}\left( {\dfrac{{{x^2} + 4x - 3x - 12 + {x^2} - 4x + 3x - 12}}{{ - 7}}} \right)\]
Adding and subtracting the like terms, we get
\[ \Rightarrow \dfrac{\pi }{4} = {\tan ^{ - 1}}\left( {\dfrac{{2{x^2} - 24}}{{ - 7}}} \right)\]
Now, we know that the equation \[p = {\tan ^{ - 1}}\theta \] can be written as \[\tan p = \theta \].
Therefore, rewriting the equation \[\dfrac{\pi }{4} = {\tan ^{ - 1}}\left( {\dfrac{{2{x^2} - 24}}{{ - 7}}} \right)\], we get
\[ \Rightarrow \tan \dfrac{\pi }{4} = \dfrac{{2{x^2} - 24}}{{ - 7}}\]
Substituting \[\tan \dfrac{\pi }{4} = 1\], we get
\[ \Rightarrow 1 = \dfrac{{2{x^2} - 24}}{{ - 7}}\]
Multiplying both sides by \[ - 7\], we get
\[\begin{array}{l} \Rightarrow 1 \times - 7 = \left( {\dfrac{{2{x^2} - 24}}{{ - 7}}} \right)\left( { - 7} \right)\\ \Rightarrow - 7 = 2{x^2} - 24\end{array}\]
Adding 24 on both sides of the equation, we get
\[\begin{array}{l} \Rightarrow - 7 + 24 = 2{x^2} - 24 + 24\\ \Rightarrow 17 = 2{x^2}\end{array}\]
Dividing both sides by 2, we get
\[ \Rightarrow \dfrac{{17}}{2} = {x^2}\]
Finally, taking the square root of both sides, we get
\[ \Rightarrow x = \pm \sqrt {\dfrac{{17}}{2}} \]
Therefore, the value of \[x\] is \[ \pm \sqrt {\dfrac{{17}}{2}} \].
Note: The equation given to us in the question has inverse trigonometric function. As the name suggests, inverse trigonometric functions are the inverse of basic trigonometric functions. It is also called ‘arc function’ because it gives the length of the arc by performing the opposite operation as a trigonometric function. We have also used the distributive property of multiplication in the solution. The distributive property of multiplication states that \[\left( {a + b} \right)\left( {c + d} \right) = a \cdot c + a \cdot d + b \cdot c + b \cdot d\].
Formula Used: We will use the formula \[{\tan ^{ - 1}}A + {\tan ^{ - 1}}B = {\tan ^{ - 1}}\left( {\dfrac{{A + B}}{{1 - AB}}} \right)\] and \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\].
Complete step-by-step answer:
We will use the formula for the sum of trigonometric inverse of two angles to simplify the equation.
We know that the sum of trigonometric inverse of two angles \[A\] and \[B\] is given by \[{\tan ^{ - 1}}A + {\tan ^{ - 1}}B = {\tan ^{ - 1}}\left( {\dfrac{{A + B}}{{1 - AB}}} \right)\].
Substituting \[A = \dfrac{{x - 3}}{{x - 4}}\] and \[B = \dfrac{{x + 3}}{{x + 4}}\] in the formula, we get
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{x - 3}}{{x - 4}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{x + 3}}{{x + 4}}} \right) = {\tan ^{ - 1}}\left[ {\dfrac{{\dfrac{{x - 3}}{{x - 4}} + \dfrac{{x + 3}}{{x + 4}}}}{{1 - \left( {\dfrac{{x - 3}}{{x - 4}}} \right)\left( {\dfrac{{x + 3}}{{x + 4}}} \right)}}} \right]\]
Substituting \[{\tan ^{ - 1}}\left( {\dfrac{{x - 3}}{{x - 4}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{x + 3}}{{x + 4}}} \right) = \dfrac{\pi }{4}\] in the equation, we get
\[ \Rightarrow \dfrac{\pi }{4} = {\tan ^{ - 1}}\left[ {\dfrac{{\dfrac{{x - 3}}{{x - 4}} + \dfrac{{x + 3}}{{x + 4}}}}{{1 - \left( {\dfrac{{x - 3}}{{x - 4}}} \right)\left( {\dfrac{{x + 3}}{{x + 4}}} \right)}}} \right]\]
Now, we will simplify the expression.
Rewriting the expression, we get
\[ \Rightarrow \dfrac{\pi }{4} = {\tan ^{ - 1}}\left[ {\dfrac{{\dfrac{{x - 3}}{{x - 4}} + \dfrac{{x + 3}}{{x + 4}}}}{{1 - \dfrac{{\left( {x - 3} \right)\left( {x + 3} \right)}}{{\left( {x - 4} \right)\left( {x + 4} \right)}}}}} \right]\]
We know that the product of sum and difference of two numbers is given by the algebraic identity \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\].
Using the algebraic identity to simplify the expression, we get
\[ \Rightarrow \dfrac{\pi }{4} = {\tan ^{ - 1}}\left[ {\dfrac{{\dfrac{{x - 3}}{{x - 4}} + \dfrac{{x + 3}}{{x + 4}}}}{{1 - \dfrac{{{x^2} - 9}}{{{x^2} - 16}}}}} \right]\]
Taking the L.C.M., we get
\[ \Rightarrow \dfrac{\pi }{4} = {\tan ^{ - 1}}\left[ {\dfrac{{\dfrac{{\left( {x - 3} \right)\left( {x + 4} \right) + \left( {x + 3} \right)\left( {x - 4} \right)}}{{\left( {x - 4} \right)\left( {x + 4} \right)}}}}{{\dfrac{{{x^2} - 16 - {x^2} + 9}}{{{x^2} - 16}}}}} \right]\]
Using the algebraic identity \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\] again, we get
\[ \Rightarrow \dfrac{\pi }{4} = {\tan ^{ - 1}}\left[ {\dfrac{{\dfrac{{\left( {x - 3} \right)\left( {x + 4} \right) + \left( {x + 3} \right)\left( {x - 4} \right)}}{{{x^2} - 16}}}}{{\dfrac{{{x^2} - 16 - {x^2} + 9}}{{{x^2} - 16}}}}} \right]\]
Simplifying the expression, we get
\[\begin{array}{l} \Rightarrow \dfrac{\pi }{4} = {\tan ^{ - 1}}\left[ {\dfrac{{\left( {x - 3} \right)\left( {x + 4} \right) + \left( {x + 3} \right)\left( {x - 4} \right)}}{{{x^2} - 16 - {x^2} + 9}}} \right]\\ \Rightarrow \dfrac{\pi }{4} = {\tan ^{ - 1}}\left[ {\dfrac{{\left( {x - 3} \right)\left( {x + 4} \right) + \left( {x + 3} \right)\left( {x - 4} \right)}}{{ - 7}}} \right]\end{array}\]
Multiplying the terms of the expression using the distributive property of multiplication, we get
\[ \Rightarrow \dfrac{\pi }{4} = {\tan ^{ - 1}}\left( {\dfrac{{{x^2} + 4x - 3x - 12 + {x^2} - 4x + 3x - 12}}{{ - 7}}} \right)\]
Adding and subtracting the like terms, we get
\[ \Rightarrow \dfrac{\pi }{4} = {\tan ^{ - 1}}\left( {\dfrac{{2{x^2} - 24}}{{ - 7}}} \right)\]
Now, we know that the equation \[p = {\tan ^{ - 1}}\theta \] can be written as \[\tan p = \theta \].
Therefore, rewriting the equation \[\dfrac{\pi }{4} = {\tan ^{ - 1}}\left( {\dfrac{{2{x^2} - 24}}{{ - 7}}} \right)\], we get
\[ \Rightarrow \tan \dfrac{\pi }{4} = \dfrac{{2{x^2} - 24}}{{ - 7}}\]
Substituting \[\tan \dfrac{\pi }{4} = 1\], we get
\[ \Rightarrow 1 = \dfrac{{2{x^2} - 24}}{{ - 7}}\]
Multiplying both sides by \[ - 7\], we get
\[\begin{array}{l} \Rightarrow 1 \times - 7 = \left( {\dfrac{{2{x^2} - 24}}{{ - 7}}} \right)\left( { - 7} \right)\\ \Rightarrow - 7 = 2{x^2} - 24\end{array}\]
Adding 24 on both sides of the equation, we get
\[\begin{array}{l} \Rightarrow - 7 + 24 = 2{x^2} - 24 + 24\\ \Rightarrow 17 = 2{x^2}\end{array}\]
Dividing both sides by 2, we get
\[ \Rightarrow \dfrac{{17}}{2} = {x^2}\]
Finally, taking the square root of both sides, we get
\[ \Rightarrow x = \pm \sqrt {\dfrac{{17}}{2}} \]
Therefore, the value of \[x\] is \[ \pm \sqrt {\dfrac{{17}}{2}} \].
Note: The equation given to us in the question has inverse trigonometric function. As the name suggests, inverse trigonometric functions are the inverse of basic trigonometric functions. It is also called ‘arc function’ because it gives the length of the arc by performing the opposite operation as a trigonometric function. We have also used the distributive property of multiplication in the solution. The distributive property of multiplication states that \[\left( {a + b} \right)\left( {c + d} \right) = a \cdot c + a \cdot d + b \cdot c + b \cdot d\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

