
Find the value of x for the given equation:
$x\cot \left( {90 + \theta } \right) + \tan \left( {90 + \theta } \right)\sin \theta + cosec\left( {90 + \theta } \right) = 0$
Answer
618k+ views
Hint – In this question use the basic trigonometric conversions like$\cot \left( {90 + \theta } \right) = - \tan \theta ,{\text{ }}\tan \left( {90 + \theta } \right) = - \cot \theta {\text{ and}}\;\cos ec\left( {90 + \theta } \right) = \sec \theta $, also some basic trigonometric ratios can be expressed in other ratios like${\text{tan}}\theta = \dfrac{{\sin \theta }}{{\cos \theta }}$. Use these to find x.
Complete step-by-step answer:
Given trigonometric equation
$x\cot \left( {90 + \theta } \right) + \tan \left( {90 + \theta } \right)\sin \theta + \cos ec\left( {90 + \theta } \right) = 0$
Now as we know some of the basic trigonometric properties such as $\cot \left( {90 + \theta } \right) = - \tan \theta ,{\text{ }}\tan \left( {90 + \theta } \right) = - \cot \theta {\text{ and}}\;\cos ec\left( {90 + \theta } \right) = \sec \theta $ so use these properties in above equation we have,
$ \Rightarrow x\left( { - \tan \theta } \right) + \left( { - \cot \theta } \right)\sin \theta + \sec \left( \theta \right) = 0$
Now as we know $\left( {\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }},\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }},\sec \theta = \dfrac{1}{{\cos \theta }}} \right)$ so substitute these values in above equation we have,
$ \Rightarrow x\left( { - \dfrac{{\sin \theta }}{{\cos \theta }}} \right) + \left( { - \dfrac{{\cos \theta }}{{\sin \theta }}} \right)\sin \theta + \dfrac{1}{{\cos \theta }} = 0$
Now simplify the above equation we have,
$ \Rightarrow - x\dfrac{{\sin \theta }}{{\cos \theta }} - \cos \theta + \dfrac{1}{{\cos \theta }} = 0$
$ \Rightarrow x\dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{1}{{\cos \theta }} - \cos \theta $
$ \Rightarrow x\dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{{1 - {{\cos }^2}\theta }}{{\cos \theta }}$
Now as we know $\left( {1 - {{\cos }^2}\theta } \right) = {\sin ^2}\theta $ so substitute this value in above equation we have,
$ \Rightarrow x\dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{{{{\sin }^2}\theta }}{{\cos \theta }}$
Now cancel out the common terms we have,
$ \Rightarrow x = \sin \theta $
So this is the required value of x for which the given trigonometric equation becomes zero.
So this is the required answer.
Note – It is always advisable to remember such basic identities while involving trigonometric questions as it helps save a lot of time. Eventually it’s difficult to mug up every identity but with practice things get easier, so keep practicing.
Complete step-by-step answer:
Given trigonometric equation
$x\cot \left( {90 + \theta } \right) + \tan \left( {90 + \theta } \right)\sin \theta + \cos ec\left( {90 + \theta } \right) = 0$
Now as we know some of the basic trigonometric properties such as $\cot \left( {90 + \theta } \right) = - \tan \theta ,{\text{ }}\tan \left( {90 + \theta } \right) = - \cot \theta {\text{ and}}\;\cos ec\left( {90 + \theta } \right) = \sec \theta $ so use these properties in above equation we have,
$ \Rightarrow x\left( { - \tan \theta } \right) + \left( { - \cot \theta } \right)\sin \theta + \sec \left( \theta \right) = 0$
Now as we know $\left( {\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }},\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }},\sec \theta = \dfrac{1}{{\cos \theta }}} \right)$ so substitute these values in above equation we have,
$ \Rightarrow x\left( { - \dfrac{{\sin \theta }}{{\cos \theta }}} \right) + \left( { - \dfrac{{\cos \theta }}{{\sin \theta }}} \right)\sin \theta + \dfrac{1}{{\cos \theta }} = 0$
Now simplify the above equation we have,
$ \Rightarrow - x\dfrac{{\sin \theta }}{{\cos \theta }} - \cos \theta + \dfrac{1}{{\cos \theta }} = 0$
$ \Rightarrow x\dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{1}{{\cos \theta }} - \cos \theta $
$ \Rightarrow x\dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{{1 - {{\cos }^2}\theta }}{{\cos \theta }}$
Now as we know $\left( {1 - {{\cos }^2}\theta } \right) = {\sin ^2}\theta $ so substitute this value in above equation we have,
$ \Rightarrow x\dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{{{{\sin }^2}\theta }}{{\cos \theta }}$
Now cancel out the common terms we have,
$ \Rightarrow x = \sin \theta $
So this is the required value of x for which the given trigonometric equation becomes zero.
So this is the required answer.
Note – It is always advisable to remember such basic identities while involving trigonometric questions as it helps save a lot of time. Eventually it’s difficult to mug up every identity but with practice things get easier, so keep practicing.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

