
Find the value of x by solving the below equation:
$\left( \dfrac{1200}{x}+2 \right)(x-10)-1200=60$
Answer
616.5k+ views
Hint: To solve the above equation, we will first expand the terms given in the brackets by multiplying them [that is evaluating $\left( \dfrac{1200}{x}+2 \right)(x-10)$]. We will then solve the resulting equation (which would be in terms of x) to get the value of x. We will then use the formula for finding the roots of the quadratic equation ($a{{x}^{2}}+bx+c=0$), given by $\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ to get the answer.
Complete step-by-step solution -
Now, to evaluate the above given equation, we start by multiplying the terms in the brackets of the LHS term. Thus, we have,
$\begin{align}
& \Rightarrow 1200-\dfrac{12000}{x}+2x-20-1200=60 \\
& \Rightarrow 2x-\dfrac{12000}{x}=80 \\
\end{align}$
Now, to solve this further, we multiply LHS and RHS by x. Thus, we get,
$\begin{align}
& \Rightarrow 2{{x}^{2}}-12000=80x \\
& \Rightarrow {{x}^{2}}-6000=40x \\
\end{align}$
Now, subtract 40x from LHS and RHS, we get,
$\Rightarrow {{x}^{2}}-40x-6000=0$
Now, we use the formula for finding the roots of the quadratic equation ($a{{x}^{2}}+bx+c=0$), given by $\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$. Thus, we will use this to find the roots. Since, in this case, a = 1, b = -40 and c = -6000. Thus, we have,
x = $\dfrac{40\pm \sqrt{{{(-40)}^{2}}-4(1)(-6000)}}{2(1)}$
x = $\dfrac{40\pm \sqrt{25600}}{2}$ = $\dfrac{40\pm 160}{2}$
x = 100, -60.
Hence, the values of x are 100 and -60.
Note: One should note that while solving equations, we should be careful of the values which cannot be possible as a solution. For example, in this problem, while solving the equation, one should note that x cannot be 0 (even if we would have got x = 0 as one of the solutions). This is because if we put x = 0 in the expression $\left( \dfrac{1200}{x}+2 \right)(x-10)-1200$, denominator of the term $\dfrac{1200}{x}$ would be 0. This is not possible and thus x = 0 can never be part of the solution (even if one may get that as a solution after solving).
Complete step-by-step solution -
Now, to evaluate the above given equation, we start by multiplying the terms in the brackets of the LHS term. Thus, we have,
$\begin{align}
& \Rightarrow 1200-\dfrac{12000}{x}+2x-20-1200=60 \\
& \Rightarrow 2x-\dfrac{12000}{x}=80 \\
\end{align}$
Now, to solve this further, we multiply LHS and RHS by x. Thus, we get,
$\begin{align}
& \Rightarrow 2{{x}^{2}}-12000=80x \\
& \Rightarrow {{x}^{2}}-6000=40x \\
\end{align}$
Now, subtract 40x from LHS and RHS, we get,
$\Rightarrow {{x}^{2}}-40x-6000=0$
Now, we use the formula for finding the roots of the quadratic equation ($a{{x}^{2}}+bx+c=0$), given by $\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$. Thus, we will use this to find the roots. Since, in this case, a = 1, b = -40 and c = -6000. Thus, we have,
x = $\dfrac{40\pm \sqrt{{{(-40)}^{2}}-4(1)(-6000)}}{2(1)}$
x = $\dfrac{40\pm \sqrt{25600}}{2}$ = $\dfrac{40\pm 160}{2}$
x = 100, -60.
Hence, the values of x are 100 and -60.
Note: One should note that while solving equations, we should be careful of the values which cannot be possible as a solution. For example, in this problem, while solving the equation, one should note that x cannot be 0 (even if we would have got x = 0 as one of the solutions). This is because if we put x = 0 in the expression $\left( \dfrac{1200}{x}+2 \right)(x-10)-1200$, denominator of the term $\dfrac{1200}{x}$ would be 0. This is not possible and thus x = 0 can never be part of the solution (even if one may get that as a solution after solving).
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

