
Find the value of x + a . If ${{\left( \dfrac{\cos A+\cos B}{\sin A-\sin B} \right)}^{n}}+{{\left( \dfrac{\sin A+\sin B}{\cos A-\cos B} \right)}^{n}}=x{{\cot }^{n}}\dfrac{A-B}{2}$ or $a$ accordingly as n is even or odd.
Answer
522.9k+ views
Hint: We first use the associative angle formulas for the trigonometric ratios. We divide with similar terms. We break the value of $n$ for odd and even terms. We find the value of $x,a$. Then we find the value of $x+a$.
Complete step by step answer:
We are going to use the associative angle formulas for the trigonometric ratios. We have
\[\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)\]
$\cos A-\cos B=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)$
$\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$
$\sin A-\sin B=2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$
We put these formulas in the left-side of the equation ${{\left( \dfrac{\cos A+\cos B}{\sin A-\sin B} \right)}^{n}}+{{\left( \dfrac{\sin A+\sin B}{\cos A-\cos B} \right)}^{n}}$.
$\begin{align}
& {{\left( \dfrac{\cos A+\cos B}{\sin A-\sin B} \right)}^{n}}+{{\left( \dfrac{\sin A+\sin B}{\cos A-\cos B} \right)}^{n}} \\
& ={{\left( \dfrac{2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)}{2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)} \right)}^{n}}+{{\left( \dfrac{2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)}{2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)} \right)}^{n}} \\
\end{align}$
We now divide both numerator and denominator with the similar terms like $2\cos \left( \dfrac{A+B}{2} \right)$ and $2\sin \left( \dfrac{A+B}{2} \right)$.
$\begin{align}
& {{\left( \dfrac{2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)}{2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)} \right)}^{n}}+{{\left( \dfrac{2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)}{2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)} \right)}^{n}} \\
& ={{\cot }^{n}}\left( \dfrac{A-B}{2} \right)+{{\left\{ \dfrac{\cos \left( \dfrac{A-B}{2} \right)}{\sin \left( \dfrac{B-A}{2} \right)} \right\}}^{n}} \\
\end{align}$
We try to keep the angle in the form of $\dfrac{A-B}{2}$ and we also know that $\sin \left( -x \right)=-\sin x$.
So, we have \[\sin \left( \dfrac{B-A}{2} \right)=\sin \left( -\dfrac{A-B}{2} \right)=-\sin \left( \dfrac{A-B}{2} \right)\].
We get \[{{\cot }^{n}}\left( \dfrac{A-B}{2} \right)+{{\left\{ -\dfrac{\cos \left( \dfrac{A-B}{2} \right)}{\sin \left( \dfrac{A-B}{2} \right)} \right\}}^{n}}={{\cot }^{n}}\left( \dfrac{A-B}{2} \right)+{{\left\{ -\cot \left( \dfrac{A-B}{2} \right) \right\}}^{n}}\].
We break the value of the $n$ in two parts to simplify the simplification.
First, we take the value of $n$ to be even. Then we get \[{{\left\{ -\cot \left( \dfrac{A-B}{2} \right) \right\}}^{n}}={{\cot }^{n}}\left( \dfrac{A-B}{2} \right)\].
Now we take the value of $n$ to be odd. Then we get \[{{\left\{ -\cot \left( \dfrac{A-B}{2} \right) \right\}}^{n}}=-{{\cot }^{n}}\left( \dfrac{A-B}{2} \right)\].
Simplifying we get
for $n$ being even, we get ${{\left( \dfrac{\cos A+\cos B}{\sin A-\sin B} \right)}^{n}}+{{\left( \dfrac{\sin A+\sin B}{\cos A-\cos B} \right)}^{n}}=2{{\cot }^{n}}\left( \dfrac{A-B}{2} \right)$.
for $n$ being odd, we get ${{\left( \dfrac{\cos A+\cos B}{\sin A-\sin B} \right)}^{n}}+{{\left( \dfrac{\sin A+\sin B}{\cos A-\cos B} \right)}^{n}}=0$.
It is given ${{\left( \dfrac{\cos A+\cos B}{\sin A-\sin B} \right)}^{n}}+{{\left( \dfrac{\sin A+\sin B}{\cos A-\cos B} \right)}^{n}}=x{{\cot }^{n}}\dfrac{A-B}{2}$ or $a$ accordingly as n is even or odd.
This gives $x=2,a=0$. Therefore, $x+a=2+0=2$.
Note: We need to remember that we can also divide with $2\cos \left( \dfrac{A+B}{2} \right)$ and $2\sin \left( \dfrac{A+B}{2} \right)$.
assuming that $\cos \left( \dfrac{A+B}{2} \right),\sin \left( \dfrac{A+B}{2} \right)\ne 0$. But if mentioned to find the general solution then the domain changes to $-\infty \le x\le \infty $. In that case we have to use the formula $\dfrac{A+B}{2}\ne n\pi ,n\pi \pm \dfrac{\pi }{2}$.
Complete step by step answer:
We are going to use the associative angle formulas for the trigonometric ratios. We have
\[\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)\]
$\cos A-\cos B=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)$
$\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$
$\sin A-\sin B=2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$
We put these formulas in the left-side of the equation ${{\left( \dfrac{\cos A+\cos B}{\sin A-\sin B} \right)}^{n}}+{{\left( \dfrac{\sin A+\sin B}{\cos A-\cos B} \right)}^{n}}$.
$\begin{align}
& {{\left( \dfrac{\cos A+\cos B}{\sin A-\sin B} \right)}^{n}}+{{\left( \dfrac{\sin A+\sin B}{\cos A-\cos B} \right)}^{n}} \\
& ={{\left( \dfrac{2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)}{2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)} \right)}^{n}}+{{\left( \dfrac{2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)}{2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)} \right)}^{n}} \\
\end{align}$
We now divide both numerator and denominator with the similar terms like $2\cos \left( \dfrac{A+B}{2} \right)$ and $2\sin \left( \dfrac{A+B}{2} \right)$.
$\begin{align}
& {{\left( \dfrac{2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)}{2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)} \right)}^{n}}+{{\left( \dfrac{2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)}{2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)} \right)}^{n}} \\
& ={{\cot }^{n}}\left( \dfrac{A-B}{2} \right)+{{\left\{ \dfrac{\cos \left( \dfrac{A-B}{2} \right)}{\sin \left( \dfrac{B-A}{2} \right)} \right\}}^{n}} \\
\end{align}$
We try to keep the angle in the form of $\dfrac{A-B}{2}$ and we also know that $\sin \left( -x \right)=-\sin x$.
So, we have \[\sin \left( \dfrac{B-A}{2} \right)=\sin \left( -\dfrac{A-B}{2} \right)=-\sin \left( \dfrac{A-B}{2} \right)\].
We get \[{{\cot }^{n}}\left( \dfrac{A-B}{2} \right)+{{\left\{ -\dfrac{\cos \left( \dfrac{A-B}{2} \right)}{\sin \left( \dfrac{A-B}{2} \right)} \right\}}^{n}}={{\cot }^{n}}\left( \dfrac{A-B}{2} \right)+{{\left\{ -\cot \left( \dfrac{A-B}{2} \right) \right\}}^{n}}\].
We break the value of the $n$ in two parts to simplify the simplification.
First, we take the value of $n$ to be even. Then we get \[{{\left\{ -\cot \left( \dfrac{A-B}{2} \right) \right\}}^{n}}={{\cot }^{n}}\left( \dfrac{A-B}{2} \right)\].
Now we take the value of $n$ to be odd. Then we get \[{{\left\{ -\cot \left( \dfrac{A-B}{2} \right) \right\}}^{n}}=-{{\cot }^{n}}\left( \dfrac{A-B}{2} \right)\].
Simplifying we get
for $n$ being even, we get ${{\left( \dfrac{\cos A+\cos B}{\sin A-\sin B} \right)}^{n}}+{{\left( \dfrac{\sin A+\sin B}{\cos A-\cos B} \right)}^{n}}=2{{\cot }^{n}}\left( \dfrac{A-B}{2} \right)$.
for $n$ being odd, we get ${{\left( \dfrac{\cos A+\cos B}{\sin A-\sin B} \right)}^{n}}+{{\left( \dfrac{\sin A+\sin B}{\cos A-\cos B} \right)}^{n}}=0$.
It is given ${{\left( \dfrac{\cos A+\cos B}{\sin A-\sin B} \right)}^{n}}+{{\left( \dfrac{\sin A+\sin B}{\cos A-\cos B} \right)}^{n}}=x{{\cot }^{n}}\dfrac{A-B}{2}$ or $a$ accordingly as n is even or odd.
This gives $x=2,a=0$. Therefore, $x+a=2+0=2$.
Note: We need to remember that we can also divide with $2\cos \left( \dfrac{A+B}{2} \right)$ and $2\sin \left( \dfrac{A+B}{2} \right)$.
assuming that $\cos \left( \dfrac{A+B}{2} \right),\sin \left( \dfrac{A+B}{2} \right)\ne 0$. But if mentioned to find the general solution then the domain changes to $-\infty \le x\le \infty $. In that case we have to use the formula $\dfrac{A+B}{2}\ne n\pi ,n\pi \pm \dfrac{\pi }{2}$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Who Won 36 Oscar Awards? Record Holder Revealed

What is the median of the first 10 natural numbers class 10 maths CBSE

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Who is the executive head of the government APresident class 10 social science CBSE

