
Find the value of $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{x}^{3}}\cot x}{1-\cos x}$.
Answer
614.4k+ views
Hint: Convert $\cot x$ as $\left( \dfrac{\cos x}{\sin x} \right)$. Use identities such as $\left\{ \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1 \right\}$ and also L’Hopital’s rule.
Complete step-by-step answer:
In the question we have to find limit,
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{x}^{3}}\cot x}{1-\cos x}$
So, now we will put $\cot x=\left( \dfrac{\cos x}{\sin x} \right)$, so the above equation can be written as,
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{x}^{3}}\cot x}{1-\cos x}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{x}^{3}}\cos x}{\sin x(1-\cos x)}$
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{x}^{3}}\cot x}{1-\cos x}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{x}^{2}}\cos x}{\dfrac{sinx}{x}(1-\cos x)}$
Here , $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$. So this identity we can use here, so the above expression can be written as,
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{x}^{3}}\cot x}{1-\cos x}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{x}^{2}}\cos x}{(1-\cos x)}$
Now divide $\cos x$ from denominator and numerator, we get
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{x}^{3}}\cot x}{1-\cos x}=\underset{x\to
0}{\mathop{\lim }}\,\dfrac{{{x}^{2}}}{(\sec x-1)}$
If we put x=0, then ,
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{x}^{3}}\cot x}{1-\cos x}=\dfrac{{{x}^{2}}}{(\sec
x-1)}=\dfrac{0}{\sec 0-1}$
As we know that the value of $\sec 0=1$, So,
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{x}^{3}}\cot x}{1-\cos
x}=\dfrac{0}{1-1}=\dfrac{0}{0}$
So, $\dfrac{{{x}^{2}}}{(\sec x-1)}$ is of ‘$\dfrac{0}{0}$’ form.
When a limit value is of ‘$\dfrac{0}{0}$’ form then we use L’Hopital’s rule.
L’Hopital’s rule evaluates by differentiating the numerator and denominator independently until a determinant form comes.
So, applying L’Hopital’s rule, we get,
$\begin{align}
& \underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{x}^{3}}\cot x}{1-\cos x}=\dfrac{\dfrac{d}{dx}\left( {{x}^{2}} \right)}{\dfrac{d}{dx}(\sec x-1)} \\
& \Rightarrow \underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{x}^{3}}\cot x}{1-\cos x}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{2x}{\sec x\tan x} \\
\end{align}$
Dividing ‘x’ from both numerator and denominator we get,
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{x}^{3}}\cot x}{1-\cos x}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{2}{\sec x\dfrac{\tan x}{x}}$
As we know $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\tan x}{x}=1$. So this identity we can use here.
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{x}^{3}}\cot x}{1-\cos x}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{2}{\sec x\times 1}=\underset{x\to 0}{\mathop{\lim }}\,2\cos x$
We know that $\cos 0=1$, so applying the limits, we get
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{x}^{3}}\cot x}{1-\cos x}=2\times \cos 0=2\times 1=2$
So, the value of the given limit is ‘2’.
Note: In these types of questions students should be careful while calculations because a single mistake can make the whole question wrong.
Another approach is we can directly apply limits in $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{x}^{3}}\cot x}{1-\cos x}$, we get $\dfrac{0}{0}$ form then we use L’Hopital’s rule, we will get the same answer.
Complete step-by-step answer:
In the question we have to find limit,
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{x}^{3}}\cot x}{1-\cos x}$
So, now we will put $\cot x=\left( \dfrac{\cos x}{\sin x} \right)$, so the above equation can be written as,
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{x}^{3}}\cot x}{1-\cos x}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{x}^{3}}\cos x}{\sin x(1-\cos x)}$
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{x}^{3}}\cot x}{1-\cos x}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{x}^{2}}\cos x}{\dfrac{sinx}{x}(1-\cos x)}$
Here , $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$. So this identity we can use here, so the above expression can be written as,
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{x}^{3}}\cot x}{1-\cos x}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{x}^{2}}\cos x}{(1-\cos x)}$
Now divide $\cos x$ from denominator and numerator, we get
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{x}^{3}}\cot x}{1-\cos x}=\underset{x\to
0}{\mathop{\lim }}\,\dfrac{{{x}^{2}}}{(\sec x-1)}$
If we put x=0, then ,
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{x}^{3}}\cot x}{1-\cos x}=\dfrac{{{x}^{2}}}{(\sec
x-1)}=\dfrac{0}{\sec 0-1}$
As we know that the value of $\sec 0=1$, So,
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{x}^{3}}\cot x}{1-\cos
x}=\dfrac{0}{1-1}=\dfrac{0}{0}$
So, $\dfrac{{{x}^{2}}}{(\sec x-1)}$ is of ‘$\dfrac{0}{0}$’ form.
When a limit value is of ‘$\dfrac{0}{0}$’ form then we use L’Hopital’s rule.
L’Hopital’s rule evaluates by differentiating the numerator and denominator independently until a determinant form comes.
So, applying L’Hopital’s rule, we get,
$\begin{align}
& \underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{x}^{3}}\cot x}{1-\cos x}=\dfrac{\dfrac{d}{dx}\left( {{x}^{2}} \right)}{\dfrac{d}{dx}(\sec x-1)} \\
& \Rightarrow \underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{x}^{3}}\cot x}{1-\cos x}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{2x}{\sec x\tan x} \\
\end{align}$
Dividing ‘x’ from both numerator and denominator we get,
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{x}^{3}}\cot x}{1-\cos x}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{2}{\sec x\dfrac{\tan x}{x}}$
As we know $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\tan x}{x}=1$. So this identity we can use here.
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{x}^{3}}\cot x}{1-\cos x}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{2}{\sec x\times 1}=\underset{x\to 0}{\mathop{\lim }}\,2\cos x$
We know that $\cos 0=1$, so applying the limits, we get
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{x}^{3}}\cot x}{1-\cos x}=2\times \cos 0=2\times 1=2$
So, the value of the given limit is ‘2’.
Note: In these types of questions students should be careful while calculations because a single mistake can make the whole question wrong.
Another approach is we can directly apply limits in $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{x}^{3}}\cot x}{1-\cos x}$, we get $\dfrac{0}{0}$ form then we use L’Hopital’s rule, we will get the same answer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

