
Find the value of the logarithmic expression given as: \[\text{lo}{{\text{g}}_{3}}\text{9+lo}{{\text{g}}_{5}}\text{25+lo}{{\text{g}}_{2}}8\]. Choose the correct option:
A. 4
B. 5
C. 6
D. 7
Answer
598.2k+ views
Hint: We have to apply the logarithmic rule \[{{\log }_{a}}\left( {{x}^{b}} \right)=b\times {{\log }_{a}}\left( x \right)\] and the exponents rule, for example: \[9={{3}^{2}}\]. Also, we have to apply the logarithmic rule \[{{\log }_{a}}\left( a \right)=1\]. Simplify each term and find the final value by adding all.
Complete step-by-step answer:
bIn the question, we have to find the value of the logarithmic expression given as: \[\text{lo}{{\text{g}}_{3}}\text{9+lo}{{\text{g}}_{5}}\text{25+lo}{{\text{g}}_{2}}8\]
So here, we have to apply the logarithmic rules and the exponents rule. The logarithmic rule that is will be applied here is \[{{\log }_{a}}\left( {{x}^{b}} \right)=b\times {{\log }_{a}}\left( x \right)\]. Now, we have to understand the values of a, b and x from the given terms of the logarithmic expressions \[\text{lo}{{\text{g}}_{3}}\text{9+lo}{{\text{g}}_{5}}\text{25+lo}{{\text{g}}_{2}}8\].
Now we will first take the first term which is \[\text{lo}{{\text{g}}_{3}}\text{9}\], in this we will apply the rule \[{{\log }_{a}}\left( {{x}^{b}} \right)=b\times {{\log }_{a}}\left( x \right)\], to obtain \[\text{lo}{{\text{g}}_{3}}\text{9}={{\log }_{3}}\left( {{3}^{2}} \right)=2{{\log }_{3}}\left( 3 \right)\]. Now we will apply the logarithmic rule \[{{\log }_{a}}\left( a \right)=1\], to get:
\[\begin{align}
& \Rightarrow \text{lo}{{\text{g}}_{3}}\text{9}={{\log }_{3}}\left( {{3}^{2}} \right) \\
& \Rightarrow \text{lo}{{\text{g}}_{3}}\text{9}=2{{\log }_{3}}\left( 3 \right) \\
& \Rightarrow \text{lo}{{\text{g}}_{3}}\text{9}=2\times \;1 \\
& \Rightarrow \text{lo}{{\text{g}}_{3}}\text{9}=2 \\
\end{align}\]
Next, we will take the next term \[\text{lo}{{\text{g}}_{5}}\text{25}\], and find the value, as follows:
\[\begin{align}
& \Rightarrow {{\log }_{5}}\left( 25 \right)={{\log }_{5}}\left( {{5}^{2}} \right) \\
& \Rightarrow {{\log }_{5}}\left( 25 \right)=2{{\log }_{5}}\left( 5 \right) \\
& \Rightarrow {{\log }_{5}}\left( 25 \right)=2\times \;1\,\,\,\,\,\,\,\,\,\,\because {{\log }_{5}}\left( 5 \right)=1 \\
& \Rightarrow {{\log }_{5}}\left( 25 \right)=2 \\
\end{align}\]
Also, we will find the value of the third term \[\text{lo}{{\text{g}}_{2}}8\]n using the same set of logarithmic rules. So, we get:
\[\begin{align}
& \Rightarrow \text{lo}{{\text{g}}_{2}}8={{\log }_{2}}\left( {{2}^{3}} \right) \\
& \Rightarrow \text{lo}{{\text{g}}_{2}}8=3{{\log }_{2}}\left( 2 \right) \\
& \Rightarrow \text{lo}{{\text{g}}_{2}}8=3\times 1\,\,\,\,\,\,\,\,\,\,\because {{\log }_{2}}\left( 2 \right)=1 \\
& \Rightarrow \text{lo}{{\text{g}}_{2}}8=3 \\
\end{align}\]
So, finally, the value of the logarithmic expression given as:
\[\begin{align}
& \Rightarrow \text{lo}{{\text{g}}_{3}}\text{9+lo}{{\text{g}}_{5}}\text{25+lo}{{\text{g}}_{2}}8=2+2+3 \\
& \Rightarrow \text{lo}{{\text{g}}_{3}}\text{9+lo}{{\text{g}}_{5}}\text{25+lo}{{\text{g}}_{2}}8=7 \\
\end{align}\]
Hence, we have obtained the final value as 7. So, the correct answer is option D.
Note: We have to be careful while simplifying the logarithmic expression and applying the rule \[{{\log }_{a}}\left( {{x}^{b}} \right)=b\times {{\log }_{a}}\left( x \right)\]. The common mistake can be when we are solving \[\text{lo}{{\text{g}}_{3}}\text{9}\], \[\text{lo}{{\text{g}}_{2}}8\] and \[\text{lo}{{\text{g}}_{5}}\text{25}\]. So, before applying the formula we have to first compare and find the values of a, b and x in the formula above.
Complete step-by-step answer:
bIn the question, we have to find the value of the logarithmic expression given as: \[\text{lo}{{\text{g}}_{3}}\text{9+lo}{{\text{g}}_{5}}\text{25+lo}{{\text{g}}_{2}}8\]
So here, we have to apply the logarithmic rules and the exponents rule. The logarithmic rule that is will be applied here is \[{{\log }_{a}}\left( {{x}^{b}} \right)=b\times {{\log }_{a}}\left( x \right)\]. Now, we have to understand the values of a, b and x from the given terms of the logarithmic expressions \[\text{lo}{{\text{g}}_{3}}\text{9+lo}{{\text{g}}_{5}}\text{25+lo}{{\text{g}}_{2}}8\].
Now we will first take the first term which is \[\text{lo}{{\text{g}}_{3}}\text{9}\], in this we will apply the rule \[{{\log }_{a}}\left( {{x}^{b}} \right)=b\times {{\log }_{a}}\left( x \right)\], to obtain \[\text{lo}{{\text{g}}_{3}}\text{9}={{\log }_{3}}\left( {{3}^{2}} \right)=2{{\log }_{3}}\left( 3 \right)\]. Now we will apply the logarithmic rule \[{{\log }_{a}}\left( a \right)=1\], to get:
\[\begin{align}
& \Rightarrow \text{lo}{{\text{g}}_{3}}\text{9}={{\log }_{3}}\left( {{3}^{2}} \right) \\
& \Rightarrow \text{lo}{{\text{g}}_{3}}\text{9}=2{{\log }_{3}}\left( 3 \right) \\
& \Rightarrow \text{lo}{{\text{g}}_{3}}\text{9}=2\times \;1 \\
& \Rightarrow \text{lo}{{\text{g}}_{3}}\text{9}=2 \\
\end{align}\]
Next, we will take the next term \[\text{lo}{{\text{g}}_{5}}\text{25}\], and find the value, as follows:
\[\begin{align}
& \Rightarrow {{\log }_{5}}\left( 25 \right)={{\log }_{5}}\left( {{5}^{2}} \right) \\
& \Rightarrow {{\log }_{5}}\left( 25 \right)=2{{\log }_{5}}\left( 5 \right) \\
& \Rightarrow {{\log }_{5}}\left( 25 \right)=2\times \;1\,\,\,\,\,\,\,\,\,\,\because {{\log }_{5}}\left( 5 \right)=1 \\
& \Rightarrow {{\log }_{5}}\left( 25 \right)=2 \\
\end{align}\]
Also, we will find the value of the third term \[\text{lo}{{\text{g}}_{2}}8\]n using the same set of logarithmic rules. So, we get:
\[\begin{align}
& \Rightarrow \text{lo}{{\text{g}}_{2}}8={{\log }_{2}}\left( {{2}^{3}} \right) \\
& \Rightarrow \text{lo}{{\text{g}}_{2}}8=3{{\log }_{2}}\left( 2 \right) \\
& \Rightarrow \text{lo}{{\text{g}}_{2}}8=3\times 1\,\,\,\,\,\,\,\,\,\,\because {{\log }_{2}}\left( 2 \right)=1 \\
& \Rightarrow \text{lo}{{\text{g}}_{2}}8=3 \\
\end{align}\]
So, finally, the value of the logarithmic expression given as:
\[\begin{align}
& \Rightarrow \text{lo}{{\text{g}}_{3}}\text{9+lo}{{\text{g}}_{5}}\text{25+lo}{{\text{g}}_{2}}8=2+2+3 \\
& \Rightarrow \text{lo}{{\text{g}}_{3}}\text{9+lo}{{\text{g}}_{5}}\text{25+lo}{{\text{g}}_{2}}8=7 \\
\end{align}\]
Hence, we have obtained the final value as 7. So, the correct answer is option D.
Note: We have to be careful while simplifying the logarithmic expression and applying the rule \[{{\log }_{a}}\left( {{x}^{b}} \right)=b\times {{\log }_{a}}\left( x \right)\]. The common mistake can be when we are solving \[\text{lo}{{\text{g}}_{3}}\text{9}\], \[\text{lo}{{\text{g}}_{2}}8\] and \[\text{lo}{{\text{g}}_{5}}\text{25}\]. So, before applying the formula we have to first compare and find the values of a, b and x in the formula above.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

