
Find the value of the function at $x=2$ denoted by $f\left( 2 \right)$ where the function is governed by the functional equation $af\left( x \right)+bf\left( \dfrac{1}{x} \right)=x-1$ subjected to the conditions $x\ne 0$ and $a\ne b$.
Answer
513k+ views
Hint: Substitute $x=2$ and $x=\dfrac{1}{2}$ in the given functional equation. The functional equation will be converted to a linear equation and you will obtain a pair of linear equations with two coefficients $a$ and $b$. Proceed by the method of elimination to eliminate the unneeded unknown in the system of equations to express $f\left( 2 \right)$ in terms of $a$ and $b$.
Complete step-by-step solution:
The given functional equation is,
$af\left( x \right)+bf\left( \dfrac{1}{x} \right)=x-1…………........\left( 1 \right)$ \[\]
Substituting $x=2$ in the above equation (1)\[\]
$af\left( 2 \right)+bf\left( \dfrac{1}{2} \right)=2-1=1................(2)$
Substituting $x=\dfrac{1}{2}$ in the above equation (1)
$af\left( \dfrac{1}{2} \right)+bf\left( \dfrac{1}{\dfrac{1}{2}} \right)=af\left( \dfrac{1}{2} \right)+bf\left( 2 \right)=\dfrac{1}{2}-1=-\dfrac{1}{2}..............(3)$
Now the obtained equations (2) and (3) are a pair of linear equations with coefficients $a$ and $b$. The unknowns in the obtained equation are $f\left( 2 \right)$ and $f\left( \dfrac{1}{2} \right)$ . We proceed to eliminate $f\left( \dfrac{1}{2} \right)$ from the system of linear of equations.\[\]
Let us multiply $a$ with equation (3)
$\begin{align}
& a\cdot \text{equation}\left( 3 \right)=a\cdot af\left( 2 \right)+a\cdot bf\left( \dfrac{1}{2} \right)=a\cdot 1 \\
& \Rightarrow {{a}^{2}}f\left( 2 \right)+abf\left( \dfrac{1}{2} \right)=a………...(4) \\
\end{align}$ \[\]
Similarly let us multiply $b$ with equation (3)
$\begin{align}
& b\cdot \text{equation}(4)=b\cdot af\left( \dfrac{1}{2} \right)+b\cdot bf\left( 2 \right)=-\dfrac{1}{2}\cdot b \\
& \Rightarrow abf\left( \dfrac{1}{2} \right)+{{b}^{2}}f\left( 2 \right)=\dfrac{-b}{2}.....(5) \\
\end{align}$\[\]
Subtracting equation (5) from equation (4).
Equation (5)- Equation (6)=
$\begin{align}
& {{a}^{2}}f\left( 2 \right)+abf\left( \dfrac{1}{2} \right)-abf\left( \dfrac{1}{2} \right)-{{b}^{2}}f\left( 2 \right)=a+\dfrac{b}{2} \\
& \Rightarrow {{a}^{2}}f\left( 2 \right)-{{b}^{2}}f\left( 2 \right)=\dfrac{2a+b}{2} \\
& \Rightarrow \left( {{a}^{2}}-{{b}^{2}} \right)f\left( 2 \right)=\dfrac{2a+b}{2} \\
& \Rightarrow f\left( 2 \right)=\dfrac{2a+b}{2\left( {{a}^{2}}-{{b}^{2}} \right)} \\
\end{align}$
So the value of $f\left( 2 \right)$ is found to be $\dfrac{2a+b}{2\left( {{a}^{2}}-{{b}^{2}} \right)}$. We can check that the $f\left( 2 \right)$ is not defined when $a=b$. That is why the question already mentions the favourable condition.
Note: The question combines the concept of linear and functional equations. While solving functional equations the key is proper substitution which is in this case 2 and $\dfrac{1}{2}$. If we cannot find the right substitution then we cannot transform the functional equation to simple linear equations. So we need to be careful while substituting.
Complete step-by-step solution:
The given functional equation is,
$af\left( x \right)+bf\left( \dfrac{1}{x} \right)=x-1…………........\left( 1 \right)$ \[\]
Substituting $x=2$ in the above equation (1)\[\]
$af\left( 2 \right)+bf\left( \dfrac{1}{2} \right)=2-1=1................(2)$
Substituting $x=\dfrac{1}{2}$ in the above equation (1)
$af\left( \dfrac{1}{2} \right)+bf\left( \dfrac{1}{\dfrac{1}{2}} \right)=af\left( \dfrac{1}{2} \right)+bf\left( 2 \right)=\dfrac{1}{2}-1=-\dfrac{1}{2}..............(3)$
Now the obtained equations (2) and (3) are a pair of linear equations with coefficients $a$ and $b$. The unknowns in the obtained equation are $f\left( 2 \right)$ and $f\left( \dfrac{1}{2} \right)$ . We proceed to eliminate $f\left( \dfrac{1}{2} \right)$ from the system of linear of equations.\[\]
Let us multiply $a$ with equation (3)
$\begin{align}
& a\cdot \text{equation}\left( 3 \right)=a\cdot af\left( 2 \right)+a\cdot bf\left( \dfrac{1}{2} \right)=a\cdot 1 \\
& \Rightarrow {{a}^{2}}f\left( 2 \right)+abf\left( \dfrac{1}{2} \right)=a………...(4) \\
\end{align}$ \[\]
Similarly let us multiply $b$ with equation (3)
$\begin{align}
& b\cdot \text{equation}(4)=b\cdot af\left( \dfrac{1}{2} \right)+b\cdot bf\left( 2 \right)=-\dfrac{1}{2}\cdot b \\
& \Rightarrow abf\left( \dfrac{1}{2} \right)+{{b}^{2}}f\left( 2 \right)=\dfrac{-b}{2}.....(5) \\
\end{align}$\[\]
Subtracting equation (5) from equation (4).
Equation (5)- Equation (6)=
$\begin{align}
& {{a}^{2}}f\left( 2 \right)+abf\left( \dfrac{1}{2} \right)-abf\left( \dfrac{1}{2} \right)-{{b}^{2}}f\left( 2 \right)=a+\dfrac{b}{2} \\
& \Rightarrow {{a}^{2}}f\left( 2 \right)-{{b}^{2}}f\left( 2 \right)=\dfrac{2a+b}{2} \\
& \Rightarrow \left( {{a}^{2}}-{{b}^{2}} \right)f\left( 2 \right)=\dfrac{2a+b}{2} \\
& \Rightarrow f\left( 2 \right)=\dfrac{2a+b}{2\left( {{a}^{2}}-{{b}^{2}} \right)} \\
\end{align}$
So the value of $f\left( 2 \right)$ is found to be $\dfrac{2a+b}{2\left( {{a}^{2}}-{{b}^{2}} \right)}$. We can check that the $f\left( 2 \right)$ is not defined when $a=b$. That is why the question already mentions the favourable condition.
Note: The question combines the concept of linear and functional equations. While solving functional equations the key is proper substitution which is in this case 2 and $\dfrac{1}{2}$. If we cannot find the right substitution then we cannot transform the functional equation to simple linear equations. So we need to be careful while substituting.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

The flightless birds Rhea Kiwi and Emu respectively class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE
