
Find the value of the function at $x=2$ denoted by $f\left( 2 \right)$ where the function is governed by the functional equation $af\left( x \right)+bf\left( \dfrac{1}{x} \right)=x-1$ subjected to the conditions $x\ne 0$ and $a\ne b$.
Answer
574.5k+ views
Hint: Substitute $x=2$ and $x=\dfrac{1}{2}$ in the given functional equation. The functional equation will be converted to a linear equation and you will obtain a pair of linear equations with two coefficients $a$ and $b$. Proceed by the method of elimination to eliminate the unneeded unknown in the system of equations to express $f\left( 2 \right)$ in terms of $a$ and $b$.
Complete step-by-step solution:
The given functional equation is,
$af\left( x \right)+bf\left( \dfrac{1}{x} \right)=x-1…………........\left( 1 \right)$ \[\]
Substituting $x=2$ in the above equation (1)\[\]
$af\left( 2 \right)+bf\left( \dfrac{1}{2} \right)=2-1=1................(2)$
Substituting $x=\dfrac{1}{2}$ in the above equation (1)
$af\left( \dfrac{1}{2} \right)+bf\left( \dfrac{1}{\dfrac{1}{2}} \right)=af\left( \dfrac{1}{2} \right)+bf\left( 2 \right)=\dfrac{1}{2}-1=-\dfrac{1}{2}..............(3)$
Now the obtained equations (2) and (3) are a pair of linear equations with coefficients $a$ and $b$. The unknowns in the obtained equation are $f\left( 2 \right)$ and $f\left( \dfrac{1}{2} \right)$ . We proceed to eliminate $f\left( \dfrac{1}{2} \right)$ from the system of linear of equations.\[\]
Let us multiply $a$ with equation (3)
$\begin{align}
& a\cdot \text{equation}\left( 3 \right)=a\cdot af\left( 2 \right)+a\cdot bf\left( \dfrac{1}{2} \right)=a\cdot 1 \\
& \Rightarrow {{a}^{2}}f\left( 2 \right)+abf\left( \dfrac{1}{2} \right)=a………...(4) \\
\end{align}$ \[\]
Similarly let us multiply $b$ with equation (3)
$\begin{align}
& b\cdot \text{equation}(4)=b\cdot af\left( \dfrac{1}{2} \right)+b\cdot bf\left( 2 \right)=-\dfrac{1}{2}\cdot b \\
& \Rightarrow abf\left( \dfrac{1}{2} \right)+{{b}^{2}}f\left( 2 \right)=\dfrac{-b}{2}.....(5) \\
\end{align}$\[\]
Subtracting equation (5) from equation (4).
Equation (5)- Equation (6)=
$\begin{align}
& {{a}^{2}}f\left( 2 \right)+abf\left( \dfrac{1}{2} \right)-abf\left( \dfrac{1}{2} \right)-{{b}^{2}}f\left( 2 \right)=a+\dfrac{b}{2} \\
& \Rightarrow {{a}^{2}}f\left( 2 \right)-{{b}^{2}}f\left( 2 \right)=\dfrac{2a+b}{2} \\
& \Rightarrow \left( {{a}^{2}}-{{b}^{2}} \right)f\left( 2 \right)=\dfrac{2a+b}{2} \\
& \Rightarrow f\left( 2 \right)=\dfrac{2a+b}{2\left( {{a}^{2}}-{{b}^{2}} \right)} \\
\end{align}$
So the value of $f\left( 2 \right)$ is found to be $\dfrac{2a+b}{2\left( {{a}^{2}}-{{b}^{2}} \right)}$. We can check that the $f\left( 2 \right)$ is not defined when $a=b$. That is why the question already mentions the favourable condition.
Note: The question combines the concept of linear and functional equations. While solving functional equations the key is proper substitution which is in this case 2 and $\dfrac{1}{2}$. If we cannot find the right substitution then we cannot transform the functional equation to simple linear equations. So we need to be careful while substituting.
Complete step-by-step solution:
The given functional equation is,
$af\left( x \right)+bf\left( \dfrac{1}{x} \right)=x-1…………........\left( 1 \right)$ \[\]
Substituting $x=2$ in the above equation (1)\[\]
$af\left( 2 \right)+bf\left( \dfrac{1}{2} \right)=2-1=1................(2)$
Substituting $x=\dfrac{1}{2}$ in the above equation (1)
$af\left( \dfrac{1}{2} \right)+bf\left( \dfrac{1}{\dfrac{1}{2}} \right)=af\left( \dfrac{1}{2} \right)+bf\left( 2 \right)=\dfrac{1}{2}-1=-\dfrac{1}{2}..............(3)$
Now the obtained equations (2) and (3) are a pair of linear equations with coefficients $a$ and $b$. The unknowns in the obtained equation are $f\left( 2 \right)$ and $f\left( \dfrac{1}{2} \right)$ . We proceed to eliminate $f\left( \dfrac{1}{2} \right)$ from the system of linear of equations.\[\]
Let us multiply $a$ with equation (3)
$\begin{align}
& a\cdot \text{equation}\left( 3 \right)=a\cdot af\left( 2 \right)+a\cdot bf\left( \dfrac{1}{2} \right)=a\cdot 1 \\
& \Rightarrow {{a}^{2}}f\left( 2 \right)+abf\left( \dfrac{1}{2} \right)=a………...(4) \\
\end{align}$ \[\]
Similarly let us multiply $b$ with equation (3)
$\begin{align}
& b\cdot \text{equation}(4)=b\cdot af\left( \dfrac{1}{2} \right)+b\cdot bf\left( 2 \right)=-\dfrac{1}{2}\cdot b \\
& \Rightarrow abf\left( \dfrac{1}{2} \right)+{{b}^{2}}f\left( 2 \right)=\dfrac{-b}{2}.....(5) \\
\end{align}$\[\]
Subtracting equation (5) from equation (4).
Equation (5)- Equation (6)=
$\begin{align}
& {{a}^{2}}f\left( 2 \right)+abf\left( \dfrac{1}{2} \right)-abf\left( \dfrac{1}{2} \right)-{{b}^{2}}f\left( 2 \right)=a+\dfrac{b}{2} \\
& \Rightarrow {{a}^{2}}f\left( 2 \right)-{{b}^{2}}f\left( 2 \right)=\dfrac{2a+b}{2} \\
& \Rightarrow \left( {{a}^{2}}-{{b}^{2}} \right)f\left( 2 \right)=\dfrac{2a+b}{2} \\
& \Rightarrow f\left( 2 \right)=\dfrac{2a+b}{2\left( {{a}^{2}}-{{b}^{2}} \right)} \\
\end{align}$
So the value of $f\left( 2 \right)$ is found to be $\dfrac{2a+b}{2\left( {{a}^{2}}-{{b}^{2}} \right)}$. We can check that the $f\left( 2 \right)$ is not defined when $a=b$. That is why the question already mentions the favourable condition.
Note: The question combines the concept of linear and functional equations. While solving functional equations the key is proper substitution which is in this case 2 and $\dfrac{1}{2}$. If we cannot find the right substitution then we cannot transform the functional equation to simple linear equations. So we need to be careful while substituting.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

The camels hump is made of which tissues a Skeletal class 11 biology CBSE

