
Find the value of the following using transformation method.$\left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
{ - 1}&2
\end{array}} \right]$
Answer
590.7k+ views
Hint: Linear transformation can be represented by matrices. If $T$is a linear transformation mapping ${R^n}\,\,to\,\,{R^m}$and $\vec x$ is a column vector with $n$entries , then $T(\vec x) = A\vec x$
For some \[m \times n\] matrix $A$called the transformation matrix of $T$.
Complete step by step solution:
Let $A = \left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
1&2
\end{array}} \right]$
$A = IA$, here $I$ is identity matrix
So, $I = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]$
Then $A = IA$
$\left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
1&2
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]A$
Now, ${R_2} \to {R_2} + {R_1}$
$\left[ {\begin{array}{*{20}{c}}
1&{ - 3} \\
{ - 1 + 2}&{2 + ( - 3)}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0 \\
{0 + 1}&{1 + 0}
\end{array}} \right]A$
$\left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
1&{2 - 3}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0 \\
1&1
\end{array}} \right]A$
$\left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
1&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0 \\
1&1
\end{array}} \right]A$
${R_1} \to {R_2} - {R_2}$
$\left[ {\begin{array}{*{20}{c}}
{2 - 1}&{ - 3 - ( - 1)} \\
1&{ - 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{1 - 1}&{0 - 1} \\
1&1
\end{array}} \right]A$
$\left[ {\begin{array}{*{20}{c}}
1&{ - 3 + 1} \\
1&{ - 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&1
\end{array}} \right]A$
$\left[ {\begin{array}{*{20}{c}}
1&{ - 2} \\
1&{ - 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&1
\end{array}} \right]A$
Now ${R_2} \to {R_1} - {R_2}$
$\left[ {\begin{array}{*{20}{c}}
1&{ - 2} \\
{1 - 1}&{ - 1 - (2)}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
{0 - 1}&{ - 1 - 1}
\end{array}} \right]A$
$\left[ {\begin{array}{*{20}{c}}
1&{ - 2} \\
0&{ - 1 + 2}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&{ - 2}
\end{array}} \right]A$
$\left[ {\begin{array}{*{20}{c}}
1&{ - 2} \\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
{ - 1}&{ - 2}
\end{array}} \right]A$
${R_1} \to {R_1} + 2{R_2}$
\[\left[ {\begin{array}{*{20}{c}}
{1 + 0}&{ - 2 + 2(1)} \\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{0 + 2 \times ( - 1)}&{ - 1 + 2( - 2)} \\
{ - 1}&{ - 2}
\end{array}} \right]\]
$\left[ {\begin{array}{*{20}{c}}
1&{ - 2 + 2} \\
0&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{ - 2}&{ - 1 - 4} \\
{ - 1}&{ - 2}
\end{array}} \right]A$
$\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 2}&{ - 5} \\
{ - 1}&{ - 2}
\end{array}} \right]A$
$\therefore {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
{ - 2}&{ - 5} \\
{ - 1}&{ - 2}
\end{array}} \right]$
Note: Students must do equating the rows and columns carefully if you add or subtract and also the operations on rows and columns should be done in such a way so that we will get the required answer
For some \[m \times n\] matrix $A$called the transformation matrix of $T$.
Complete step by step solution:
Let $A = \left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
1&2
\end{array}} \right]$
$A = IA$, here $I$ is identity matrix
So, $I = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]$
Then $A = IA$
$\left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
1&2
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]A$
Now, ${R_2} \to {R_2} + {R_1}$
$\left[ {\begin{array}{*{20}{c}}
1&{ - 3} \\
{ - 1 + 2}&{2 + ( - 3)}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0 \\
{0 + 1}&{1 + 0}
\end{array}} \right]A$
$\left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
1&{2 - 3}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0 \\
1&1
\end{array}} \right]A$
$\left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
1&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0 \\
1&1
\end{array}} \right]A$
${R_1} \to {R_2} - {R_2}$
$\left[ {\begin{array}{*{20}{c}}
{2 - 1}&{ - 3 - ( - 1)} \\
1&{ - 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{1 - 1}&{0 - 1} \\
1&1
\end{array}} \right]A$
$\left[ {\begin{array}{*{20}{c}}
1&{ - 3 + 1} \\
1&{ - 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&1
\end{array}} \right]A$
$\left[ {\begin{array}{*{20}{c}}
1&{ - 2} \\
1&{ - 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&1
\end{array}} \right]A$
Now ${R_2} \to {R_1} - {R_2}$
$\left[ {\begin{array}{*{20}{c}}
1&{ - 2} \\
{1 - 1}&{ - 1 - (2)}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
{0 - 1}&{ - 1 - 1}
\end{array}} \right]A$
$\left[ {\begin{array}{*{20}{c}}
1&{ - 2} \\
0&{ - 1 + 2}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&{ - 2}
\end{array}} \right]A$
$\left[ {\begin{array}{*{20}{c}}
1&{ - 2} \\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
{ - 1}&{ - 2}
\end{array}} \right]A$
${R_1} \to {R_1} + 2{R_2}$
\[\left[ {\begin{array}{*{20}{c}}
{1 + 0}&{ - 2 + 2(1)} \\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{0 + 2 \times ( - 1)}&{ - 1 + 2( - 2)} \\
{ - 1}&{ - 2}
\end{array}} \right]\]
$\left[ {\begin{array}{*{20}{c}}
1&{ - 2 + 2} \\
0&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{ - 2}&{ - 1 - 4} \\
{ - 1}&{ - 2}
\end{array}} \right]A$
$\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 2}&{ - 5} \\
{ - 1}&{ - 2}
\end{array}} \right]A$
$\therefore {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
{ - 2}&{ - 5} \\
{ - 1}&{ - 2}
\end{array}} \right]$
Note: Students must do equating the rows and columns carefully if you add or subtract and also the operations on rows and columns should be done in such a way so that we will get the required answer
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

