
Find the value of the following using transformation method.$\left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
{ - 1}&2
\end{array}} \right]$
Answer
512.1k+ views
Hint: Linear transformation can be represented by matrices. If $T$is a linear transformation mapping ${R^n}\,\,to\,\,{R^m}$and $\vec x$ is a column vector with $n$entries , then $T(\vec x) = A\vec x$
For some \[m \times n\] matrix $A$called the transformation matrix of $T$.
Complete step by step solution:
Let $A = \left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
1&2
\end{array}} \right]$
$A = IA$, here $I$ is identity matrix
So, $I = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]$
Then $A = IA$
$\left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
1&2
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]A$
Now, ${R_2} \to {R_2} + {R_1}$
$\left[ {\begin{array}{*{20}{c}}
1&{ - 3} \\
{ - 1 + 2}&{2 + ( - 3)}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0 \\
{0 + 1}&{1 + 0}
\end{array}} \right]A$
$\left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
1&{2 - 3}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0 \\
1&1
\end{array}} \right]A$
$\left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
1&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0 \\
1&1
\end{array}} \right]A$
${R_1} \to {R_2} - {R_2}$
$\left[ {\begin{array}{*{20}{c}}
{2 - 1}&{ - 3 - ( - 1)} \\
1&{ - 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{1 - 1}&{0 - 1} \\
1&1
\end{array}} \right]A$
$\left[ {\begin{array}{*{20}{c}}
1&{ - 3 + 1} \\
1&{ - 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&1
\end{array}} \right]A$
$\left[ {\begin{array}{*{20}{c}}
1&{ - 2} \\
1&{ - 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&1
\end{array}} \right]A$
Now ${R_2} \to {R_1} - {R_2}$
$\left[ {\begin{array}{*{20}{c}}
1&{ - 2} \\
{1 - 1}&{ - 1 - (2)}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
{0 - 1}&{ - 1 - 1}
\end{array}} \right]A$
$\left[ {\begin{array}{*{20}{c}}
1&{ - 2} \\
0&{ - 1 + 2}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&{ - 2}
\end{array}} \right]A$
$\left[ {\begin{array}{*{20}{c}}
1&{ - 2} \\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
{ - 1}&{ - 2}
\end{array}} \right]A$
${R_1} \to {R_1} + 2{R_2}$
\[\left[ {\begin{array}{*{20}{c}}
{1 + 0}&{ - 2 + 2(1)} \\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{0 + 2 \times ( - 1)}&{ - 1 + 2( - 2)} \\
{ - 1}&{ - 2}
\end{array}} \right]\]
$\left[ {\begin{array}{*{20}{c}}
1&{ - 2 + 2} \\
0&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{ - 2}&{ - 1 - 4} \\
{ - 1}&{ - 2}
\end{array}} \right]A$
$\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 2}&{ - 5} \\
{ - 1}&{ - 2}
\end{array}} \right]A$
$\therefore {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
{ - 2}&{ - 5} \\
{ - 1}&{ - 2}
\end{array}} \right]$
Note: Students must do equating the rows and columns carefully if you add or subtract and also the operations on rows and columns should be done in such a way so that we will get the required answer
For some \[m \times n\] matrix $A$called the transformation matrix of $T$.
Complete step by step solution:
Let $A = \left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
1&2
\end{array}} \right]$
$A = IA$, here $I$ is identity matrix
So, $I = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]$
Then $A = IA$
$\left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
1&2
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]A$
Now, ${R_2} \to {R_2} + {R_1}$
$\left[ {\begin{array}{*{20}{c}}
1&{ - 3} \\
{ - 1 + 2}&{2 + ( - 3)}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0 \\
{0 + 1}&{1 + 0}
\end{array}} \right]A$
$\left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
1&{2 - 3}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0 \\
1&1
\end{array}} \right]A$
$\left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
1&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0 \\
1&1
\end{array}} \right]A$
${R_1} \to {R_2} - {R_2}$
$\left[ {\begin{array}{*{20}{c}}
{2 - 1}&{ - 3 - ( - 1)} \\
1&{ - 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{1 - 1}&{0 - 1} \\
1&1
\end{array}} \right]A$
$\left[ {\begin{array}{*{20}{c}}
1&{ - 3 + 1} \\
1&{ - 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&1
\end{array}} \right]A$
$\left[ {\begin{array}{*{20}{c}}
1&{ - 2} \\
1&{ - 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&1
\end{array}} \right]A$
Now ${R_2} \to {R_1} - {R_2}$
$\left[ {\begin{array}{*{20}{c}}
1&{ - 2} \\
{1 - 1}&{ - 1 - (2)}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
{0 - 1}&{ - 1 - 1}
\end{array}} \right]A$
$\left[ {\begin{array}{*{20}{c}}
1&{ - 2} \\
0&{ - 1 + 2}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&{ - 2}
\end{array}} \right]A$
$\left[ {\begin{array}{*{20}{c}}
1&{ - 2} \\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
{ - 1}&{ - 2}
\end{array}} \right]A$
${R_1} \to {R_1} + 2{R_2}$
\[\left[ {\begin{array}{*{20}{c}}
{1 + 0}&{ - 2 + 2(1)} \\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{0 + 2 \times ( - 1)}&{ - 1 + 2( - 2)} \\
{ - 1}&{ - 2}
\end{array}} \right]\]
$\left[ {\begin{array}{*{20}{c}}
1&{ - 2 + 2} \\
0&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{ - 2}&{ - 1 - 4} \\
{ - 1}&{ - 2}
\end{array}} \right]A$
$\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 2}&{ - 5} \\
{ - 1}&{ - 2}
\end{array}} \right]A$
$\therefore {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
{ - 2}&{ - 5} \\
{ - 1}&{ - 2}
\end{array}} \right]$
Note: Students must do equating the rows and columns carefully if you add or subtract and also the operations on rows and columns should be done in such a way so that we will get the required answer
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Gautam Buddha was born in the year A581 BC B563 BC class 10 social science CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 10 biology CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE
