
Find the value of the following limit.
\[\underset{n\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{\left( n+1 \right)\left( n+2 \right).....\left( 3n \right)}{{{n}^{2n}}} \right)}^{\dfrac{1}{n}}}\]
\[\left( a \right)\dfrac{18}{{{e}^{4}}}\]
\[\left( b \right)\dfrac{27}{{{e}^{2}}}\]
\[\left( c \right)\dfrac{9}{{{e}^{2}}}\]
\[\left( d \right)3\log 3-2\]
Answer
588k+ views
Hint:We start by letting our limit as y. We have \[\dfrac{1}{n}\] in the power. So, we apply log on both sides to simplify this. We will use \[\log \left( ab \right)=\log a+\log b\] to convert this limit into summation.
\[\ln y=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\sum\limits_{r=1}^{2n}{\ln \left( 1+\dfrac{r}{n} \right)}\]
Lastly, we will use the ILATE formula of the integral to integrate where we use \[\int{\left( u.v \right)dx=}u.\int{vdx}-\int{\left[ \dfrac{du}{dx}\left( \int{vdx} \right) \right]dx}\] to get our required answer.
Complete step by step answer:
We have to find the limit of \[{{\left( \dfrac{\left( n+1 \right)\left( n+2 \right).....\left( 3n \right)}{{{n}^{2n}}} \right)}^{\dfrac{1}{n}}}\] as \[n\to \infty .\] Let us assume the limit as y. So, we get,
\[y=\underset{n\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{\left( n+1 \right)\left( n+2 \right).....\left( 3n \right)}{{{n}^{2n}}} \right)}^{\dfrac{1}{n}}}\]
Now we take log on both the sides, we will get,
\[\ln y=\underset{n\to \infty }{\mathop{\lim }}\,\ln {{\left( \dfrac{\left( n+1 \right)}{n}\dfrac{\left( n+2 \right)}{n}......\dfrac{\left( n+2n \right)}{n} \right)}^{\dfrac{1}{n}}}\]
As, \[\log {{a}^{b}}=b\log a,\] so we get,
\[\ln y=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\ln \left( \dfrac{\left( n+1 \right)}{n}\dfrac{\left( n+2 \right)}{n}......\dfrac{\left( n+2n \right)}{n} \right)\]
We know that,
\[\log \left( abc \right)=\log a+\log b+\log c\]
So, we get,
\[\ln y=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left[ \ln \left( 1+\dfrac{1}{n} \right)+\ln \left( 1+\dfrac{2}{n} \right).....+\ln \left( 1+\dfrac{2n}{n} \right) \right]\]
We can clearly see that we are getting a summation of \[\log \left( 1+\dfrac{r}{n} \right)\] here. So, we get,
\[\ln y=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\sum\limits_{r=1}^{2n}{\ln \left( 1+\dfrac{r}{n} \right)}\]
Let, \[\dfrac{r}{n}=x,\] so, \[\dfrac{dr}{n}=dx.\]
And, when r = 1, so, \[x=\dfrac{1}{n}.\]
As, \[n\to \infty ,\] so, x = 0.
Therefore, r = 1 means, x = 0.
And when r = 2n, so, \[x=\dfrac{2n}{n}=2.\]
So,
\[\ln y=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\sum\limits_{r=1}^{2n}{\ln \left( 1+\dfrac{r}{n} \right)}\]
Becomes
\[\ln y=\int\limits_{0}^{2}{\ln \left( 1+n \right)dx}\]
Now we use ILATE, so, our first function is u = ln (1 + n) and second function is v = 1.
We know that,
\[\int\limits_{a}^{b}{\left( u.v \right)dx}=u.\int\limits_{a}^{b}{vdx}-\int\limits_{a}^{b}{\left[ \dfrac{du}{dx}\int{vdx} \right]dx}\]
So applying this on \[\int\limits_{0}^{2}{\ln \left( 1+n \right)dn}\] with u = ln (1 + n) and v = 1. So, we get,
\[\int\limits_{0}^{2}{\ln \left( 1+n \right)dn=\ln \left( 1+n \right)\int\limits_{0}^{2}{dn}}-\int\limits_{0}^{2}{\left[ \dfrac{d\left( \ln \left( 1+n \right) \right)}{dn}\int{dn} \right]}dn\]
\[\int\limits_{0}^{2}{\ln \left( 1+n \right)dn=\left[ n.\ln \left( 1+n \right) \right]_{0}^{2}}-\int\limits_{0}^{2}{\dfrac{n}{1+n}dn}......\left( i \right)\]
Let, \[{{I}_{1}}=\int\limits_{0}^{2}{\dfrac{n}{1+n}dn}\]
\[\Rightarrow {{I}_{1}}=\int\limits_{0}^{2}{\dfrac{n+1-1}{1+n}dn}\]
\[\Rightarrow {{I}_{1}}=\int\limits_{0}^{2}{1-\dfrac{1}{1+n}dn}\]
\[\Rightarrow {{I}_{1}}=\left( n \right)_{0}^{2}-\left[ \ln \left( 1+n \right) \right]_{0}^{2}......\left( ii \right)\]
Using (i) and (ii), we get,
\[\int\limits_{0}^{2}{\ln \left( 1+n \right)dn}=\left[ n\ln \left( 1+n \right) \right]_{0}^{2}-\left[ \left( n \right)_{0}^{2}-\left( \ln \left( 1+n \right) \right)_{0}^{2} \right]\]
\[\Rightarrow \int\limits_{0}^{2}{\ln \left( 1+n \right)dn}=\left( 2\ln 3-0 \right)-\left[ \left( 2-0 \right)-\left( \ln 3-0 \right) \right]\]
Simplifying, we get,
\[\Rightarrow \int\limits_{0}^{2}{\ln \left( 1+n \right)dn}=2\ln 3+\ln 3-2\]
\[\Rightarrow \int\limits_{0}^{2}{\ln \left( 1+n \right)dn}=3\ln 3-2\]
We know that, ln e = 1. So,
\[\ln y=3\ln 3-2\ln e\]
We know that, \[\log {{a}^{b}}=b\log a.\]
So,
\[\ln y=\ln {{3}^{3}}-\ln {{e}^{2}}\]
As, \[\ln \left( \dfrac{a}{b} \right)=\ln a-\ln b,\] we get,
\[\Rightarrow \ln y=\ln \left( \dfrac{{{3}^{3}}}{{{e}^{2}}} \right)\]
Comparing both the sides, we get,
\[y=\dfrac{{{3}^{3}}}{{{e}^{2}}}=\dfrac{27}{{{e}^{2}}}\]
So, our limit is \[\dfrac{27}{{{e}^{2}}}.\]
Hence, the right option is (b).
Note:
Remember that \[\int{\dfrac{1}{1+n}dn}=\log \left( 1+n \right)\] because we took 1 + n as t and then differentiate both the sides, we get, dx = dt. So, \[\int{\dfrac{1}{1+n}dn}=\int{\dfrac{1}{t}dt}\] and \[\int{\dfrac{1}{t}dt}=\log t.\] So, we get, \[\int{\dfrac{1}{1+n}dn}=\log t.\] Putting t back as 1 + n, we get, \[\int{\dfrac{1}{x}dx}=\log \left( 1+x \right)\] but \[\int{\dfrac{1}{1-x}dx}\ne \log \left( 1-x \right)\] because if we take 1 – x as t, we get, dx = – dt when we give
\[\int{\dfrac{1}{1-x}dx}=\int{\dfrac{1}{t}\left( -dt \right)}\]
\[\Rightarrow -\log t=-\log \left( 1-x \right)\]
\[\ln y=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\sum\limits_{r=1}^{2n}{\ln \left( 1+\dfrac{r}{n} \right)}\]
Lastly, we will use the ILATE formula of the integral to integrate where we use \[\int{\left( u.v \right)dx=}u.\int{vdx}-\int{\left[ \dfrac{du}{dx}\left( \int{vdx} \right) \right]dx}\] to get our required answer.
Complete step by step answer:
We have to find the limit of \[{{\left( \dfrac{\left( n+1 \right)\left( n+2 \right).....\left( 3n \right)}{{{n}^{2n}}} \right)}^{\dfrac{1}{n}}}\] as \[n\to \infty .\] Let us assume the limit as y. So, we get,
\[y=\underset{n\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{\left( n+1 \right)\left( n+2 \right).....\left( 3n \right)}{{{n}^{2n}}} \right)}^{\dfrac{1}{n}}}\]
Now we take log on both the sides, we will get,
\[\ln y=\underset{n\to \infty }{\mathop{\lim }}\,\ln {{\left( \dfrac{\left( n+1 \right)}{n}\dfrac{\left( n+2 \right)}{n}......\dfrac{\left( n+2n \right)}{n} \right)}^{\dfrac{1}{n}}}\]
As, \[\log {{a}^{b}}=b\log a,\] so we get,
\[\ln y=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\ln \left( \dfrac{\left( n+1 \right)}{n}\dfrac{\left( n+2 \right)}{n}......\dfrac{\left( n+2n \right)}{n} \right)\]
We know that,
\[\log \left( abc \right)=\log a+\log b+\log c\]
So, we get,
\[\ln y=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left[ \ln \left( 1+\dfrac{1}{n} \right)+\ln \left( 1+\dfrac{2}{n} \right).....+\ln \left( 1+\dfrac{2n}{n} \right) \right]\]
We can clearly see that we are getting a summation of \[\log \left( 1+\dfrac{r}{n} \right)\] here. So, we get,
\[\ln y=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\sum\limits_{r=1}^{2n}{\ln \left( 1+\dfrac{r}{n} \right)}\]
Let, \[\dfrac{r}{n}=x,\] so, \[\dfrac{dr}{n}=dx.\]
And, when r = 1, so, \[x=\dfrac{1}{n}.\]
As, \[n\to \infty ,\] so, x = 0.
Therefore, r = 1 means, x = 0.
And when r = 2n, so, \[x=\dfrac{2n}{n}=2.\]
So,
\[\ln y=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\sum\limits_{r=1}^{2n}{\ln \left( 1+\dfrac{r}{n} \right)}\]
Becomes
\[\ln y=\int\limits_{0}^{2}{\ln \left( 1+n \right)dx}\]
Now we use ILATE, so, our first function is u = ln (1 + n) and second function is v = 1.
We know that,
\[\int\limits_{a}^{b}{\left( u.v \right)dx}=u.\int\limits_{a}^{b}{vdx}-\int\limits_{a}^{b}{\left[ \dfrac{du}{dx}\int{vdx} \right]dx}\]
So applying this on \[\int\limits_{0}^{2}{\ln \left( 1+n \right)dn}\] with u = ln (1 + n) and v = 1. So, we get,
\[\int\limits_{0}^{2}{\ln \left( 1+n \right)dn=\ln \left( 1+n \right)\int\limits_{0}^{2}{dn}}-\int\limits_{0}^{2}{\left[ \dfrac{d\left( \ln \left( 1+n \right) \right)}{dn}\int{dn} \right]}dn\]
\[\int\limits_{0}^{2}{\ln \left( 1+n \right)dn=\left[ n.\ln \left( 1+n \right) \right]_{0}^{2}}-\int\limits_{0}^{2}{\dfrac{n}{1+n}dn}......\left( i \right)\]
Let, \[{{I}_{1}}=\int\limits_{0}^{2}{\dfrac{n}{1+n}dn}\]
\[\Rightarrow {{I}_{1}}=\int\limits_{0}^{2}{\dfrac{n+1-1}{1+n}dn}\]
\[\Rightarrow {{I}_{1}}=\int\limits_{0}^{2}{1-\dfrac{1}{1+n}dn}\]
\[\Rightarrow {{I}_{1}}=\left( n \right)_{0}^{2}-\left[ \ln \left( 1+n \right) \right]_{0}^{2}......\left( ii \right)\]
Using (i) and (ii), we get,
\[\int\limits_{0}^{2}{\ln \left( 1+n \right)dn}=\left[ n\ln \left( 1+n \right) \right]_{0}^{2}-\left[ \left( n \right)_{0}^{2}-\left( \ln \left( 1+n \right) \right)_{0}^{2} \right]\]
\[\Rightarrow \int\limits_{0}^{2}{\ln \left( 1+n \right)dn}=\left( 2\ln 3-0 \right)-\left[ \left( 2-0 \right)-\left( \ln 3-0 \right) \right]\]
Simplifying, we get,
\[\Rightarrow \int\limits_{0}^{2}{\ln \left( 1+n \right)dn}=2\ln 3+\ln 3-2\]
\[\Rightarrow \int\limits_{0}^{2}{\ln \left( 1+n \right)dn}=3\ln 3-2\]
We know that, ln e = 1. So,
\[\ln y=3\ln 3-2\ln e\]
We know that, \[\log {{a}^{b}}=b\log a.\]
So,
\[\ln y=\ln {{3}^{3}}-\ln {{e}^{2}}\]
As, \[\ln \left( \dfrac{a}{b} \right)=\ln a-\ln b,\] we get,
\[\Rightarrow \ln y=\ln \left( \dfrac{{{3}^{3}}}{{{e}^{2}}} \right)\]
Comparing both the sides, we get,
\[y=\dfrac{{{3}^{3}}}{{{e}^{2}}}=\dfrac{27}{{{e}^{2}}}\]
So, our limit is \[\dfrac{27}{{{e}^{2}}}.\]
Hence, the right option is (b).
Note:
Remember that \[\int{\dfrac{1}{1+n}dn}=\log \left( 1+n \right)\] because we took 1 + n as t and then differentiate both the sides, we get, dx = dt. So, \[\int{\dfrac{1}{1+n}dn}=\int{\dfrac{1}{t}dt}\] and \[\int{\dfrac{1}{t}dt}=\log t.\] So, we get, \[\int{\dfrac{1}{1+n}dn}=\log t.\] Putting t back as 1 + n, we get, \[\int{\dfrac{1}{x}dx}=\log \left( 1+x \right)\] but \[\int{\dfrac{1}{1-x}dx}\ne \log \left( 1-x \right)\] because if we take 1 – x as t, we get, dx = – dt when we give
\[\int{\dfrac{1}{1-x}dx}=\int{\dfrac{1}{t}\left( -dt \right)}\]
\[\Rightarrow -\log t=-\log \left( 1-x \right)\]
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

