
Find the value of the following expression:
${{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}$
Answer
612k+ views
Hint:In this problem we can use the following formula:
${{x}^{2}}+{{y}^{2}}={{\left( x+y \right)}^{2}}-2{{x}^{2}}{{y}^{2}}$ . Or we can use,
${{x}^{2}}+{{y}^{2}}=\dfrac{1}{2}\left[ {{\left( x+y \right)}^{2}}+{{\left( x-y \right)}^{2}} \right]$
We use substitution of the terms in the bracket with some variables to make simplification easier then finally substitute the original terms in the answer.
Complete Step-by-step answer:
Let us first take the given expression:
${{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}$
We can write it as,
${{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}={{\left( {{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{2}} \right)}^{2}}+{{\left( {{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{2}} \right)}^{2}}$
Let us assign ${{a}^{2}}=p$ and $\sqrt{{{a}^{2}}-1}=q$ to simplify the expression. So our expression will become:
${{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}={{\left( {{\left( p+q \right)}^{2}} \right)}^{2}}+{{\left( {{\left( p-q \right)}^{2}} \right)}^{2}}$
Now let us apply the formula, ${{x}^{2}}+{{y}^{2}}={{\left( x+y \right)}^{2}}-2{x}{{y}}$. By applying the formula, we will get:
${{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}={{\left( {{\left( p+q \right)}^{2}}+{{\left( p-q \right)}^{2}} \right)}^{2}}-2{{\left( p+q \right)}^{2}}{{\left( p-q \right)}^{2}}$
Now, we can again apply the formula ${{x}^{2}}+{{y}^{2}}={{\left( x+y \right)}^{2}}-2{{x}^{2}}{{y}^{2}}$ in the part $\left( {{\left( p+q \right)}^{2}}+{{\left( p-q \right)}^{2}} \right)$, we get
${{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}={{\left( {{\left( p+q+p-q \right)}^{2}}-2\left( p+q \right)\left( p-q \right) \right)}^{2}}-2{{\left( \left( p+q \right)\left( p-q \right) \right)}^{2}}$ ,
By applying the formula ${{p}^{2}}-{{q}^{2}}=\left( p+q \right)\left( p-q \right)$ we will get,
$\begin{align}
& {{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}={{\left( {{\left( 2p \right)}^{2}}-2\left( {{p}^{2}}-{{q}^{2}} \right) \right)}^{2}}-2{{\left( {{p}^{2}}-{{q}^{2}} \right)}^{2}} \\
& \Rightarrow {{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}={{\left( 4{{p}^{2}}-2{{p}^{2}}+2{{q}^{2}} \right)}^{2}}-2{{\left( {{p}^{2}}-{{q}^{2}} \right)}^{2}} \\
\end{align}$
By applying the formula ${{\left( x-y \right)}^{2}}={{x}^{2}}-2xy+{{y}^{2}}$ we will get,
\[\begin{align}
& {{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}={{\left( 2{{p}^{2}}+2{{q}^{2}} \right)}^{2}}-2\left( {{\left( {{p}^{2}} \right)}^{2}}-2{{p}^{2}}{{q}^{2}}+{{\left( {{q}^{2}} \right)}^{2}} \right) \\
& \Rightarrow {{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}={{\left( 2{{p}^{2}}+2{{q}^{2}} \right)}^{2}}-2\left( {{p}^{4}}-2{{p}^{2}}{{q}^{2}}+{{q}^{4}} \right) \\
\end{align}\]
Now we will apply the formula, ${{\left( x+y \right)}^{2}}={{x}^{2}}+2xy+{{y}^{2}}$, the above expression can be written as
$\begin{align}
& {{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}=\left( {{\left( 2{{p}^{2}} \right)}^{2}}+2\times \left( 2{{p}^{2}} \right)\times \left( 2{{q}^{2}} \right)+{{\left( 2{{q}^{2}} \right)}^{2}} \right)-2{{p}^{4}}+4{{p}^{2}}{{q}^{2}}-2{{q}^{4}} \\
& \Rightarrow {{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}=4{{p}^{4}}+8{{p}^{2}}{{q}^{2}}+4{{q}^{4}}-2{{p}^{4}}+4{{p}^{2}}{{q}^{2}}-2{{q}^{4}} \\
\end{align}$
By grouping the terms with same variables together and adding or subtracting them we will get,
$\begin{align}
& {{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}=\left( 4{{p}^{4}}-2{{p}^{4}} \right)+\left( 8{{p}^{2}}{{q}^{2}}+4{{p}^{2}}{{q}^{2}} \right)+\left( 4{{q}^{4}}-2{{q}^{4}} \right) \\
& \Rightarrow {{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}=2{{p}^{4}}+12{{p}^{2}}{{q}^{2}}+2{{q}^{4}} \\
\end{align}$
By substituting the value of $p$ and $q$we get,
${{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}=2{{\left( {{a}^{2}} \right)}^{4}}+12{{\left( {{a}^{2}} \right)}^{2}}{{\left( \sqrt{{{a}^{2}}-1} \right)}^{2}}+2{{\left( \sqrt{{{a}^{2}}-1} \right)}^{4}}$
Now, apply the Laws of Exponents to simplify the above expression. Mainly the Power of a Power Rule, which is ${{\left( {{a}^{x}} \right)}^{y}}={{a}^{xy}}$ and multiplication Rule, which is ${{a}^{x}}\times {{a}^{y}}={{a}^{x+y}}$, the above expression can be written as,
$\begin{align}
& {{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}=2{{a}^{2\times 4}}+12{{a}^{2\times 2}}{{\left( {{a}^{2}}-1 \right)}^{\dfrac{1}{2}\times 2}}+2{{\left( {{a}^{2}}-1 \right)}^{\dfrac{1}{2}\times 4}} \\
& \Rightarrow {{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}=2{{a}^{8}}+12{{a}^{4}}\left( {{a}^{2}}-1 \right)+2{{\left( {{a}^{2}}-1 \right)}^{2}} \\
\end{align}$
On opening the brackets and simplifying, we get
$\begin{align}
& {{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}=2{{a}^{8}}+12{{a}^{4}}\times {{a}^{2}}-12{{a}^{4}}+2\left( {{\left( {{a}^{2}} \right)}^{2}}-2\times {{a}^{^{2}}}\times 1+{{\left( 1 \right)}^{2}} \right) \\
& \Rightarrow {{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}=2{{a}^{8}}+12{{a}^{4+2}}-12{{a}^{4}}+2\left( {{a}^{4}}-2{{a}^{2}}+1 \right) \\
& \Rightarrow {{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}=2{{a}^{8}}+12{{a}^{6}}-12{{a}^{4}}+2{{a}^{4}}-4{{a}^{2}}+2 \\
& \Rightarrow {{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}=2{{a}^{8}}+12{{a}^{6}}-10{{a}^{4}}-4{{a}^{2}}+2 \\
\end{align}$
This is the required solution.
Note: We can also solve this problem by using the following formulas directly:
$\begin{align}
& {{\left( x+y \right)}^{4}}={{x}^{4}}+4{{x}^{3}}y+6{{x}^{2}}{{y}^{2}}+4x{{y}^{3}}+{{y}^{4}}......(1) \\
& {{\left( x-y \right)}^{4}}={{x}^{4}}-4{{x}^{3}}y+6{{x}^{2}}{{y}^{2}}-4x{{y}^{3}}+{{y}^{4}}.......(2) \\
\end{align}$
Now, by adding these two equations we will get:
$\Rightarrow {{\left( x+y \right)}^{4}}+{{\left( x-y \right)}^{4}}=2{{x}^{4}}+16{{x}^{2}}{{y}^{2}}+2{{y}^{4}}$
Now, just substitute $x={{a}^{2}}$ and $y=\sqrt{{{a}^{2}}-1}$
$=2{{\left( {{a}^{2}} \right)}^{4}}+12{{\left( {{a}^{2}} \right)}^{2}}{{\left( \sqrt{{{a}^{2}}-1} \right)}^{2}}+2{{\left( \sqrt{{{a}^{2}}-1} \right)}^{4}}$
Now, apply the Laws of Exponents to simplify the expression. Mainly the Power of a Power Rule, which is ${{\left( {{a}^{x}} \right)}^{y}}={{a}^{xy}}$ and Multiplication Rule, which is ${{a}^{x}}\times {{a}^{y}}={{a}^{x+y}}$
$=2{{a}^{2\times 4}}+12{{a}^{2\times 2}}{{\left( {{a}^{2}}-1 \right)}^{\dfrac{1}{2}\times 2}}+2{{\left( {{a}^{2}}-1 \right)}^{\dfrac{1}{2}\times 4}}$
$=2{{a}^{8}}+12{{a}^{4}}\left( {{a}^{2}}-1 \right)+2{{\left( {{a}^{2}}-1 \right)}^{2}}$
$=2{{a}^{8}}+12{{a}^{4}}\times {{a}^{2}}-12{{a}^{4}}+2\left( {{\left( {{a}^{2}} \right)}^{2}}-2\times {{a}^{^{2}}}\times 1+{{\left( 1 \right)}^{2}} \right)$
$=2{{a}^{8}}+12{{a}^{4+2}}-12{{a}^{4}}+2\left( {{a}^{4}}-2{{a}^{2}}+1 \right)$
$\begin{align}
& =2{{a}^{8}}+12{{a}^{6}}-12{{a}^{4}}+2{{a}^{4}}-4{{a}^{2}}+2 \\
& =2{{a}^{8}}+12{{a}^{6}}-10{{a}^{4}}-4{{a}^{2}}+2 \\
\end{align}$
${{x}^{2}}+{{y}^{2}}={{\left( x+y \right)}^{2}}-2{{x}^{2}}{{y}^{2}}$ . Or we can use,
${{x}^{2}}+{{y}^{2}}=\dfrac{1}{2}\left[ {{\left( x+y \right)}^{2}}+{{\left( x-y \right)}^{2}} \right]$
We use substitution of the terms in the bracket with some variables to make simplification easier then finally substitute the original terms in the answer.
Complete Step-by-step answer:
Let us first take the given expression:
${{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}$
We can write it as,
${{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}={{\left( {{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{2}} \right)}^{2}}+{{\left( {{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{2}} \right)}^{2}}$
Let us assign ${{a}^{2}}=p$ and $\sqrt{{{a}^{2}}-1}=q$ to simplify the expression. So our expression will become:
${{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}={{\left( {{\left( p+q \right)}^{2}} \right)}^{2}}+{{\left( {{\left( p-q \right)}^{2}} \right)}^{2}}$
Now let us apply the formula, ${{x}^{2}}+{{y}^{2}}={{\left( x+y \right)}^{2}}-2{x}{{y}}$. By applying the formula, we will get:
${{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}={{\left( {{\left( p+q \right)}^{2}}+{{\left( p-q \right)}^{2}} \right)}^{2}}-2{{\left( p+q \right)}^{2}}{{\left( p-q \right)}^{2}}$
Now, we can again apply the formula ${{x}^{2}}+{{y}^{2}}={{\left( x+y \right)}^{2}}-2{{x}^{2}}{{y}^{2}}$ in the part $\left( {{\left( p+q \right)}^{2}}+{{\left( p-q \right)}^{2}} \right)$, we get
${{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}={{\left( {{\left( p+q+p-q \right)}^{2}}-2\left( p+q \right)\left( p-q \right) \right)}^{2}}-2{{\left( \left( p+q \right)\left( p-q \right) \right)}^{2}}$ ,
By applying the formula ${{p}^{2}}-{{q}^{2}}=\left( p+q \right)\left( p-q \right)$ we will get,
$\begin{align}
& {{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}={{\left( {{\left( 2p \right)}^{2}}-2\left( {{p}^{2}}-{{q}^{2}} \right) \right)}^{2}}-2{{\left( {{p}^{2}}-{{q}^{2}} \right)}^{2}} \\
& \Rightarrow {{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}={{\left( 4{{p}^{2}}-2{{p}^{2}}+2{{q}^{2}} \right)}^{2}}-2{{\left( {{p}^{2}}-{{q}^{2}} \right)}^{2}} \\
\end{align}$
By applying the formula ${{\left( x-y \right)}^{2}}={{x}^{2}}-2xy+{{y}^{2}}$ we will get,
\[\begin{align}
& {{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}={{\left( 2{{p}^{2}}+2{{q}^{2}} \right)}^{2}}-2\left( {{\left( {{p}^{2}} \right)}^{2}}-2{{p}^{2}}{{q}^{2}}+{{\left( {{q}^{2}} \right)}^{2}} \right) \\
& \Rightarrow {{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}={{\left( 2{{p}^{2}}+2{{q}^{2}} \right)}^{2}}-2\left( {{p}^{4}}-2{{p}^{2}}{{q}^{2}}+{{q}^{4}} \right) \\
\end{align}\]
Now we will apply the formula, ${{\left( x+y \right)}^{2}}={{x}^{2}}+2xy+{{y}^{2}}$, the above expression can be written as
$\begin{align}
& {{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}=\left( {{\left( 2{{p}^{2}} \right)}^{2}}+2\times \left( 2{{p}^{2}} \right)\times \left( 2{{q}^{2}} \right)+{{\left( 2{{q}^{2}} \right)}^{2}} \right)-2{{p}^{4}}+4{{p}^{2}}{{q}^{2}}-2{{q}^{4}} \\
& \Rightarrow {{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}=4{{p}^{4}}+8{{p}^{2}}{{q}^{2}}+4{{q}^{4}}-2{{p}^{4}}+4{{p}^{2}}{{q}^{2}}-2{{q}^{4}} \\
\end{align}$
By grouping the terms with same variables together and adding or subtracting them we will get,
$\begin{align}
& {{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}=\left( 4{{p}^{4}}-2{{p}^{4}} \right)+\left( 8{{p}^{2}}{{q}^{2}}+4{{p}^{2}}{{q}^{2}} \right)+\left( 4{{q}^{4}}-2{{q}^{4}} \right) \\
& \Rightarrow {{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}=2{{p}^{4}}+12{{p}^{2}}{{q}^{2}}+2{{q}^{4}} \\
\end{align}$
By substituting the value of $p$ and $q$we get,
${{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}=2{{\left( {{a}^{2}} \right)}^{4}}+12{{\left( {{a}^{2}} \right)}^{2}}{{\left( \sqrt{{{a}^{2}}-1} \right)}^{2}}+2{{\left( \sqrt{{{a}^{2}}-1} \right)}^{4}}$
Now, apply the Laws of Exponents to simplify the above expression. Mainly the Power of a Power Rule, which is ${{\left( {{a}^{x}} \right)}^{y}}={{a}^{xy}}$ and multiplication Rule, which is ${{a}^{x}}\times {{a}^{y}}={{a}^{x+y}}$, the above expression can be written as,
$\begin{align}
& {{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}=2{{a}^{2\times 4}}+12{{a}^{2\times 2}}{{\left( {{a}^{2}}-1 \right)}^{\dfrac{1}{2}\times 2}}+2{{\left( {{a}^{2}}-1 \right)}^{\dfrac{1}{2}\times 4}} \\
& \Rightarrow {{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}=2{{a}^{8}}+12{{a}^{4}}\left( {{a}^{2}}-1 \right)+2{{\left( {{a}^{2}}-1 \right)}^{2}} \\
\end{align}$
On opening the brackets and simplifying, we get
$\begin{align}
& {{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}=2{{a}^{8}}+12{{a}^{4}}\times {{a}^{2}}-12{{a}^{4}}+2\left( {{\left( {{a}^{2}} \right)}^{2}}-2\times {{a}^{^{2}}}\times 1+{{\left( 1 \right)}^{2}} \right) \\
& \Rightarrow {{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}=2{{a}^{8}}+12{{a}^{4+2}}-12{{a}^{4}}+2\left( {{a}^{4}}-2{{a}^{2}}+1 \right) \\
& \Rightarrow {{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}=2{{a}^{8}}+12{{a}^{6}}-12{{a}^{4}}+2{{a}^{4}}-4{{a}^{2}}+2 \\
& \Rightarrow {{\left( {{a}^{2}}+\sqrt{{{a}^{2}}-1} \right)}^{4}}+{{\left( {{a}^{2}}-\sqrt{{{a}^{2}}-1} \right)}^{4}}=2{{a}^{8}}+12{{a}^{6}}-10{{a}^{4}}-4{{a}^{2}}+2 \\
\end{align}$
This is the required solution.
Note: We can also solve this problem by using the following formulas directly:
$\begin{align}
& {{\left( x+y \right)}^{4}}={{x}^{4}}+4{{x}^{3}}y+6{{x}^{2}}{{y}^{2}}+4x{{y}^{3}}+{{y}^{4}}......(1) \\
& {{\left( x-y \right)}^{4}}={{x}^{4}}-4{{x}^{3}}y+6{{x}^{2}}{{y}^{2}}-4x{{y}^{3}}+{{y}^{4}}.......(2) \\
\end{align}$
Now, by adding these two equations we will get:
$\Rightarrow {{\left( x+y \right)}^{4}}+{{\left( x-y \right)}^{4}}=2{{x}^{4}}+16{{x}^{2}}{{y}^{2}}+2{{y}^{4}}$
Now, just substitute $x={{a}^{2}}$ and $y=\sqrt{{{a}^{2}}-1}$
$=2{{\left( {{a}^{2}} \right)}^{4}}+12{{\left( {{a}^{2}} \right)}^{2}}{{\left( \sqrt{{{a}^{2}}-1} \right)}^{2}}+2{{\left( \sqrt{{{a}^{2}}-1} \right)}^{4}}$
Now, apply the Laws of Exponents to simplify the expression. Mainly the Power of a Power Rule, which is ${{\left( {{a}^{x}} \right)}^{y}}={{a}^{xy}}$ and Multiplication Rule, which is ${{a}^{x}}\times {{a}^{y}}={{a}^{x+y}}$
$=2{{a}^{2\times 4}}+12{{a}^{2\times 2}}{{\left( {{a}^{2}}-1 \right)}^{\dfrac{1}{2}\times 2}}+2{{\left( {{a}^{2}}-1 \right)}^{\dfrac{1}{2}\times 4}}$
$=2{{a}^{8}}+12{{a}^{4}}\left( {{a}^{2}}-1 \right)+2{{\left( {{a}^{2}}-1 \right)}^{2}}$
$=2{{a}^{8}}+12{{a}^{4}}\times {{a}^{2}}-12{{a}^{4}}+2\left( {{\left( {{a}^{2}} \right)}^{2}}-2\times {{a}^{^{2}}}\times 1+{{\left( 1 \right)}^{2}} \right)$
$=2{{a}^{8}}+12{{a}^{4+2}}-12{{a}^{4}}+2\left( {{a}^{4}}-2{{a}^{2}}+1 \right)$
$\begin{align}
& =2{{a}^{8}}+12{{a}^{6}}-12{{a}^{4}}+2{{a}^{4}}-4{{a}^{2}}+2 \\
& =2{{a}^{8}}+12{{a}^{6}}-10{{a}^{4}}-4{{a}^{2}}+2 \\
\end{align}$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

