
Find the value of the following:
\[\dfrac{\cos (0).\sin \dfrac{\pi }{2}.{{\cos }^{2}}\left( \dfrac{\pi }{6} \right).{{\sec }^{2}}\left( \dfrac{\pi }{4} \right)}{\tan \left( \dfrac{\pi }{3} \right)+\cot \left( \dfrac{\pi }{3} \right)}\]
Answer
603.9k+ views
Hint: In this question, first of all, recollect the value of \[\cos \left( {{0}^{o}} \right),\sin \dfrac{\pi }{2},\cos \dfrac{\pi }{6},\sec \dfrac{\pi }{4},\tan \dfrac{\pi }{3},\cot \dfrac{\pi }{3}\] by using a trigonometric table for general angles. Now, substitute these values in the given expression to get the required answer.
Complete step-by-step solution -
In this question, we have to find the value of the expression
\[\dfrac{\cos (0).\sin \dfrac{\pi }{2}.{{\cos }^{2}}\left( \dfrac{\pi }{6} \right).{{\sec }^{2}}\left( \dfrac{\pi }{4} \right)}{\tan \left( \dfrac{\pi }{3} \right)+\cot \left( \dfrac{\pi }{3} \right)}\]
Let us consider the expression given in the question,
\[E=\dfrac{\cos (0).\sin \dfrac{\pi }{2}.{{\cos }^{2}}\left( \dfrac{\pi }{6} \right).{{\sec }^{2}}\left( \dfrac{\pi }{4} \right)}{\tan \left( \dfrac{\pi }{3} \right)+\cot \left( \dfrac{\pi }{3} \right)}\]
We can also write the above expression as,
\[E=\dfrac{\cos (0).\sin \dfrac{\pi }{2}.{{\left[ \cos \left( \dfrac{\pi }{6} \right) \right]}^{2}}.{{\left[ \sec \left( \dfrac{\pi }{4} \right) \right]}^{2}}}{\tan \left( \dfrac{\pi }{3} \right)+\cot \left( \dfrac{\pi }{3} \right)}.....\left( i \right)\]
Now let us find the values of \[\cos \left( {{0}^{o}} \right),\sin \dfrac{\pi }{2},\cos \dfrac{\pi }{6},\sec \dfrac{\pi }{4},\tan \dfrac{\pi }{3},\cot \dfrac{\pi }{3}\] from the trigonometric table for general angles.
From the above table, we get the values of \[\cos \left( {{0}^{o}} \right),\sin \dfrac{\pi }{2},\cos \dfrac{\pi }{6},\sec \dfrac{\pi }{4},\tan \dfrac{\pi }{3},\cot \dfrac{\pi }{3}\] as follows:
\[\cos \left( 0 \right)=1\]
\[\sin \left( \dfrac{\pi }{2} \right)=1\]
\[\cos \left( \dfrac{\pi }{6} \right)=\dfrac{\sqrt{3}}{2}\]
\[\sec \left( \dfrac{\pi }{4} \right)=\sqrt{2}\]
\[\tan \left( \dfrac{\pi }{3} \right)=\sqrt{3}\]
\[\cot \left( \dfrac{\pi }{3} \right)=\dfrac{1}{\sqrt{3}}\]
By substituting these values in equation (i), we get,
\[E=\dfrac{\left( 1 \right)\left( 1 \right){{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}}{{\left( \sqrt{2} \right)}^{2}}}{\sqrt{3}+\dfrac{1}{\sqrt{3}}}\]
By simplifying the above expression, we get,
\[E=\dfrac{\left( 1 \right).\left( 1 \right).\left( \dfrac{3}{4} \right).\left( 2 \right)}{\sqrt{3}+\dfrac{1}{\sqrt{3}}}\]
\[E=\dfrac{\dfrac{6}{4}}{\dfrac{{{\left( \sqrt{3} \right)}^{2}}+1}{\sqrt{3}}}\]
\[E=\dfrac{\dfrac{6}{4}}{\dfrac{3+1}{\sqrt{3}}}\]
\[E=\dfrac{\dfrac{6}{4}}{\dfrac{4}{\sqrt{3}}}\]
\[E=\dfrac{6}{4}\times \dfrac{\sqrt{3}}{4}\]
\[E=\dfrac{6\sqrt{3}}{16}\]
By simplifying the above fraction, we get,
\[E=\dfrac{3\sqrt{3}}{8}\]
Hence, we get the value of \[\dfrac{\cos (0).\sin \dfrac{\pi }{2}.{{\cos }^{2}}\left( \dfrac{\pi }{6} \right).{{\sec }^{2}}\left( \dfrac{\pi }{4} \right)}{\tan \left( \dfrac{\pi }{3} \right)+\cot \left( \dfrac{\pi }{3} \right)}\text{ as }\dfrac{3\sqrt{3}}{8}\].
Note: In these types of questions, first of all, it is very important to remember all the trigonometric ratios of general angles like \[{{0}^{o}},\dfrac{\pi }{6},\dfrac{\pi }{3},\dfrac{\pi }{4},\dfrac{\pi }{2},etc.\] and also substitute them properly. Students are advised to at least remember all the values for \[\sin \theta \text{ and }\cos \theta \] because by using these, we can easily find the values for other trigonometric ratios like \[\tan \theta =\dfrac{\sin \theta }{\cos \theta },\cot \theta =\dfrac{\cos \theta }{\sin \theta },\sec \theta =\dfrac{1}{\cos \theta },\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }\].
Complete step-by-step solution -
In this question, we have to find the value of the expression
\[\dfrac{\cos (0).\sin \dfrac{\pi }{2}.{{\cos }^{2}}\left( \dfrac{\pi }{6} \right).{{\sec }^{2}}\left( \dfrac{\pi }{4} \right)}{\tan \left( \dfrac{\pi }{3} \right)+\cot \left( \dfrac{\pi }{3} \right)}\]
Let us consider the expression given in the question,
\[E=\dfrac{\cos (0).\sin \dfrac{\pi }{2}.{{\cos }^{2}}\left( \dfrac{\pi }{6} \right).{{\sec }^{2}}\left( \dfrac{\pi }{4} \right)}{\tan \left( \dfrac{\pi }{3} \right)+\cot \left( \dfrac{\pi }{3} \right)}\]
We can also write the above expression as,
\[E=\dfrac{\cos (0).\sin \dfrac{\pi }{2}.{{\left[ \cos \left( \dfrac{\pi }{6} \right) \right]}^{2}}.{{\left[ \sec \left( \dfrac{\pi }{4} \right) \right]}^{2}}}{\tan \left( \dfrac{\pi }{3} \right)+\cot \left( \dfrac{\pi }{3} \right)}.....\left( i \right)\]
Now let us find the values of \[\cos \left( {{0}^{o}} \right),\sin \dfrac{\pi }{2},\cos \dfrac{\pi }{6},\sec \dfrac{\pi }{4},\tan \dfrac{\pi }{3},\cot \dfrac{\pi }{3}\] from the trigonometric table for general angles.
| \[\sin \theta \] | \[\cos \theta \] | \[\tan \theta \] | \[\operatorname{cosec}\theta \] | \[\sec \theta \] | \[\cot \theta \] | |
| 0 | 0 | 1 | 0 | - | 1 | - |
| \[\dfrac{\pi }{6}\] | \[\dfrac{1}{2}\] | \[\dfrac{\sqrt{3}}{2}\] | \[\dfrac{1}{\sqrt{3}}\] | 2 | \[\dfrac{2}{\sqrt{3}}\] | \[\sqrt{3}\] |
| \[\dfrac{\pi }{4}\] | \[\dfrac{1}{\sqrt{2}}\] | \[\dfrac{1}{\sqrt{2}}\] | 1 | \[\sqrt{2}\] | \[\sqrt{2}\] | 1 |
| \[\dfrac{\pi }{3}\] | \[\dfrac{\sqrt{3}}{2}\] | \[\dfrac{1}{2}\] | \[\sqrt{3}\] | \[\dfrac{2}{\sqrt{3}}\] | 2 | \[\dfrac{1}{\sqrt{3}}\] |
| \[\dfrac{\pi }{2}\] | 1 | 0 | - | 1 | - | 0 |
From the above table, we get the values of \[\cos \left( {{0}^{o}} \right),\sin \dfrac{\pi }{2},\cos \dfrac{\pi }{6},\sec \dfrac{\pi }{4},\tan \dfrac{\pi }{3},\cot \dfrac{\pi }{3}\] as follows:
\[\cos \left( 0 \right)=1\]
\[\sin \left( \dfrac{\pi }{2} \right)=1\]
\[\cos \left( \dfrac{\pi }{6} \right)=\dfrac{\sqrt{3}}{2}\]
\[\sec \left( \dfrac{\pi }{4} \right)=\sqrt{2}\]
\[\tan \left( \dfrac{\pi }{3} \right)=\sqrt{3}\]
\[\cot \left( \dfrac{\pi }{3} \right)=\dfrac{1}{\sqrt{3}}\]
By substituting these values in equation (i), we get,
\[E=\dfrac{\left( 1 \right)\left( 1 \right){{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}}{{\left( \sqrt{2} \right)}^{2}}}{\sqrt{3}+\dfrac{1}{\sqrt{3}}}\]
By simplifying the above expression, we get,
\[E=\dfrac{\left( 1 \right).\left( 1 \right).\left( \dfrac{3}{4} \right).\left( 2 \right)}{\sqrt{3}+\dfrac{1}{\sqrt{3}}}\]
\[E=\dfrac{\dfrac{6}{4}}{\dfrac{{{\left( \sqrt{3} \right)}^{2}}+1}{\sqrt{3}}}\]
\[E=\dfrac{\dfrac{6}{4}}{\dfrac{3+1}{\sqrt{3}}}\]
\[E=\dfrac{\dfrac{6}{4}}{\dfrac{4}{\sqrt{3}}}\]
\[E=\dfrac{6}{4}\times \dfrac{\sqrt{3}}{4}\]
\[E=\dfrac{6\sqrt{3}}{16}\]
By simplifying the above fraction, we get,
\[E=\dfrac{3\sqrt{3}}{8}\]
Hence, we get the value of \[\dfrac{\cos (0).\sin \dfrac{\pi }{2}.{{\cos }^{2}}\left( \dfrac{\pi }{6} \right).{{\sec }^{2}}\left( \dfrac{\pi }{4} \right)}{\tan \left( \dfrac{\pi }{3} \right)+\cot \left( \dfrac{\pi }{3} \right)}\text{ as }\dfrac{3\sqrt{3}}{8}\].
Note: In these types of questions, first of all, it is very important to remember all the trigonometric ratios of general angles like \[{{0}^{o}},\dfrac{\pi }{6},\dfrac{\pi }{3},\dfrac{\pi }{4},\dfrac{\pi }{2},etc.\] and also substitute them properly. Students are advised to at least remember all the values for \[\sin \theta \text{ and }\cos \theta \] because by using these, we can easily find the values for other trigonometric ratios like \[\tan \theta =\dfrac{\sin \theta }{\cos \theta },\cot \theta =\dfrac{\cos \theta }{\sin \theta },\sec \theta =\dfrac{1}{\cos \theta },\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }\].
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

