
Find the value of $\tan \dfrac{{19\pi }}{3}$
Answer
512.7k+ views
Hint: We know, that the function \[y = \tan x\]has a period of $\pi $ or \[180^\circ \], i.e. the value of \[\tan x\] repeats after an interval of $\pi $ or \[180^\circ \].
Therefore write $\dfrac{{19\pi }}{3}$ as \[\left( {6\pi + \dfrac{\pi }{3}} \right)\] and proceed.
Complete step-by-step answer:
We know that the function \[y = \tan x\]has a period of $\pi $ or \[180^\circ \], i.e. the value of \[\tan x\]repeats after an interval of $\pi $ or \[180^\circ \].
Therefore,
\[tan\dfrac{{19\pi }}{3}\]
Above expression can be written as,
\[ = tan\left( {\dfrac{{18\pi + \pi }}{3}} \right)\]
On separating the terms we get,
\[ = tan\left( {6\pi + \dfrac{\pi }{3}} \right)\]
Since, \[\dfrac{{{\text{19}}\pi }}{{\text{3}}}\]lies in the first quadrant, therefore \[{\text{tan}}\dfrac{{{\text{19}}\pi }}{{\text{3}}}\] will be positive,
\[tan\dfrac{\pi }{3} = \sqrt 3 \]
As \[tan\dfrac{\pi }{3} = \sqrt 3 \],
\[ = \sqrt 3 \]
Therefore the value of $\tan \dfrac{{19\pi }}{3}$is \[\sqrt 3 \]
Note: Note the following important formulae:
1.$\cos x = \dfrac{1}{{\sec x}}$ , $\sin x = \dfrac{1}{{\cos ecx}}$ , $\tan x = \dfrac{1}{{\cot x}}$
2.${\sin ^2}x + {\cos ^2}x = 1$
3.\[{\sec ^2}x - {\tan ^2}x = 1\]
4.\[{\operatorname{cosec} ^2}x - {\cot ^2}x = 1\]
5.$\sin ( - x) = - \sin x$
6.$\cos ( - x) = \cos x$
7.$\tan ( - x) = - \tan x$
8.$\sin \left( {2n\pi \pm x} \right) = \sin x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
9.$\cos \left( {2n\pi \pm x} \right) = \cos x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
10.$\tan \left( {n\pi \pm x} \right) = \tan x{\text{ , period }}\pi {\text{ or 18}}{0^ \circ }$
Sign convention:
Also, the trigonometric ratios of the standard angles are given by
Therefore write $\dfrac{{19\pi }}{3}$ as \[\left( {6\pi + \dfrac{\pi }{3}} \right)\] and proceed.
Complete step-by-step answer:
We know that the function \[y = \tan x\]has a period of $\pi $ or \[180^\circ \], i.e. the value of \[\tan x\]repeats after an interval of $\pi $ or \[180^\circ \].
Therefore,
\[tan\dfrac{{19\pi }}{3}\]
Above expression can be written as,
\[ = tan\left( {\dfrac{{18\pi + \pi }}{3}} \right)\]
On separating the terms we get,
\[ = tan\left( {6\pi + \dfrac{\pi }{3}} \right)\]
Since, \[\dfrac{{{\text{19}}\pi }}{{\text{3}}}\]lies in the first quadrant, therefore \[{\text{tan}}\dfrac{{{\text{19}}\pi }}{{\text{3}}}\] will be positive,
\[tan\dfrac{\pi }{3} = \sqrt 3 \]
As \[tan\dfrac{\pi }{3} = \sqrt 3 \],
\[ = \sqrt 3 \]
Therefore the value of $\tan \dfrac{{19\pi }}{3}$is \[\sqrt 3 \]
Note: Note the following important formulae:
1.$\cos x = \dfrac{1}{{\sec x}}$ , $\sin x = \dfrac{1}{{\cos ecx}}$ , $\tan x = \dfrac{1}{{\cot x}}$
2.${\sin ^2}x + {\cos ^2}x = 1$
3.\[{\sec ^2}x - {\tan ^2}x = 1\]
4.\[{\operatorname{cosec} ^2}x - {\cot ^2}x = 1\]
5.$\sin ( - x) = - \sin x$
6.$\cos ( - x) = \cos x$
7.$\tan ( - x) = - \tan x$
8.$\sin \left( {2n\pi \pm x} \right) = \sin x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
9.$\cos \left( {2n\pi \pm x} \right) = \cos x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
10.$\tan \left( {n\pi \pm x} \right) = \tan x{\text{ , period }}\pi {\text{ or 18}}{0^ \circ }$
Sign convention:

Also, the trigonometric ratios of the standard angles are given by
\[0^\circ \] | \[30^\circ \] | \[45^\circ \] | \[60^\circ \] | \[90^\circ \] | |
\[\operatorname{Sin} x\] | 0 | $\dfrac{1}{2}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{{\sqrt 3 }}{2}$ | 1 |
\[\operatorname{Cos} x\] | 1 | $\dfrac{{\sqrt 3 }}{2}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{1}{2}$ | 0 |
\[\operatorname{Tan} x\] | 0 | $\dfrac{1}{{\sqrt 3 }}$ | 1 | $\sqrt 3 $ | Undefined |
\[Cotx\] | undefined | $\sqrt 3 $ | 1 | $\dfrac{1}{{\sqrt 3 }}$ | 0 |
\[\cos ecx\] | undefined | 2 | $\sqrt 2 $ | $\dfrac{2}{{\sqrt 3 }}$ | 1 |
\[\operatorname{Sec} x\] | 1 | $\dfrac{2}{{\sqrt 3 }}$ | $\sqrt 2 $ | 2 | Undefined |
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Net gain of ATP in glycolysis a 6 b 2 c 4 d 8 class 11 biology CBSE

Give two reasons to justify a Water at room temperature class 11 chemistry CBSE
