
Find the value of $\tan \dfrac{{19\pi }}{3}$
Answer
576.3k+ views
Hint: We know, that the function \[y = \tan x\]has a period of $\pi $ or \[180^\circ \], i.e. the value of \[\tan x\] repeats after an interval of $\pi $ or \[180^\circ \].
Therefore write $\dfrac{{19\pi }}{3}$ as \[\left( {6\pi + \dfrac{\pi }{3}} \right)\] and proceed.
Complete step-by-step answer:
We know that the function \[y = \tan x\]has a period of $\pi $ or \[180^\circ \], i.e. the value of \[\tan x\]repeats after an interval of $\pi $ or \[180^\circ \].
Therefore,
\[tan\dfrac{{19\pi }}{3}\]
Above expression can be written as,
\[ = tan\left( {\dfrac{{18\pi + \pi }}{3}} \right)\]
On separating the terms we get,
\[ = tan\left( {6\pi + \dfrac{\pi }{3}} \right)\]
Since, \[\dfrac{{{\text{19}}\pi }}{{\text{3}}}\]lies in the first quadrant, therefore \[{\text{tan}}\dfrac{{{\text{19}}\pi }}{{\text{3}}}\] will be positive,
\[tan\dfrac{\pi }{3} = \sqrt 3 \]
As \[tan\dfrac{\pi }{3} = \sqrt 3 \],
\[ = \sqrt 3 \]
Therefore the value of $\tan \dfrac{{19\pi }}{3}$is \[\sqrt 3 \]
Note: Note the following important formulae:
1.$\cos x = \dfrac{1}{{\sec x}}$ , $\sin x = \dfrac{1}{{\cos ecx}}$ , $\tan x = \dfrac{1}{{\cot x}}$
2.${\sin ^2}x + {\cos ^2}x = 1$
3.\[{\sec ^2}x - {\tan ^2}x = 1\]
4.\[{\operatorname{cosec} ^2}x - {\cot ^2}x = 1\]
5.$\sin ( - x) = - \sin x$
6.$\cos ( - x) = \cos x$
7.$\tan ( - x) = - \tan x$
8.$\sin \left( {2n\pi \pm x} \right) = \sin x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
9.$\cos \left( {2n\pi \pm x} \right) = \cos x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
10.$\tan \left( {n\pi \pm x} \right) = \tan x{\text{ , period }}\pi {\text{ or 18}}{0^ \circ }$
Sign convention:
Also, the trigonometric ratios of the standard angles are given by
Therefore write $\dfrac{{19\pi }}{3}$ as \[\left( {6\pi + \dfrac{\pi }{3}} \right)\] and proceed.
Complete step-by-step answer:
We know that the function \[y = \tan x\]has a period of $\pi $ or \[180^\circ \], i.e. the value of \[\tan x\]repeats after an interval of $\pi $ or \[180^\circ \].
Therefore,
\[tan\dfrac{{19\pi }}{3}\]
Above expression can be written as,
\[ = tan\left( {\dfrac{{18\pi + \pi }}{3}} \right)\]
On separating the terms we get,
\[ = tan\left( {6\pi + \dfrac{\pi }{3}} \right)\]
Since, \[\dfrac{{{\text{19}}\pi }}{{\text{3}}}\]lies in the first quadrant, therefore \[{\text{tan}}\dfrac{{{\text{19}}\pi }}{{\text{3}}}\] will be positive,
\[tan\dfrac{\pi }{3} = \sqrt 3 \]
As \[tan\dfrac{\pi }{3} = \sqrt 3 \],
\[ = \sqrt 3 \]
Therefore the value of $\tan \dfrac{{19\pi }}{3}$is \[\sqrt 3 \]
Note: Note the following important formulae:
1.$\cos x = \dfrac{1}{{\sec x}}$ , $\sin x = \dfrac{1}{{\cos ecx}}$ , $\tan x = \dfrac{1}{{\cot x}}$
2.${\sin ^2}x + {\cos ^2}x = 1$
3.\[{\sec ^2}x - {\tan ^2}x = 1\]
4.\[{\operatorname{cosec} ^2}x - {\cot ^2}x = 1\]
5.$\sin ( - x) = - \sin x$
6.$\cos ( - x) = \cos x$
7.$\tan ( - x) = - \tan x$
8.$\sin \left( {2n\pi \pm x} \right) = \sin x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
9.$\cos \left( {2n\pi \pm x} \right) = \cos x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
10.$\tan \left( {n\pi \pm x} \right) = \tan x{\text{ , period }}\pi {\text{ or 18}}{0^ \circ }$
Sign convention:
Also, the trigonometric ratios of the standard angles are given by
| \[0^\circ \] | \[30^\circ \] | \[45^\circ \] | \[60^\circ \] | \[90^\circ \] | |
| \[\operatorname{Sin} x\] | 0 | $\dfrac{1}{2}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{{\sqrt 3 }}{2}$ | 1 |
| \[\operatorname{Cos} x\] | 1 | $\dfrac{{\sqrt 3 }}{2}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{1}{2}$ | 0 |
| \[\operatorname{Tan} x\] | 0 | $\dfrac{1}{{\sqrt 3 }}$ | 1 | $\sqrt 3 $ | Undefined |
| \[Cotx\] | undefined | $\sqrt 3 $ | 1 | $\dfrac{1}{{\sqrt 3 }}$ | 0 |
| \[\cos ecx\] | undefined | 2 | $\sqrt 2 $ | $\dfrac{2}{{\sqrt 3 }}$ | 1 |
| \[\operatorname{Sec} x\] | 1 | $\dfrac{2}{{\sqrt 3 }}$ | $\sqrt 2 $ | 2 | Undefined |
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

