
Find the value of $\tan {{9}^{\circ }}-\tan {{27}^{\circ }}-\tan {{63}^{\circ }}+\tan {{81}^{\circ }}$.
Answer
565.8k+ views
Hint: We convert the tangents of angles $\tan {{81}^{\circ }},\tan {{63}^{\circ }}$ to their corresponding co-tangents using the complimentary angle relation $\tan \left( {{90}^{\circ }}-\theta \right)=\cot \theta $. We convert the tangent and cotangent of the angles to corresponding using the identity $\tan \theta =\dfrac{\sin \theta }{\cos \theta },\cot \theta =\dfrac{\cos \theta }{\sin \theta }$. We simplify further using the sine double angle formula $\sin 2\theta =2\sin \theta \cos \theta $ and difference of sine of angles formula $\sin C-\sin D=2\cos \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)$.\[\]
Complete step-by-step solution:
We know if there are two complementary angles say $\theta $ and ${{90}^{\circ }}-\theta $ then the relation between tangent and cotangent are given by
\[\tan \left( {{90}^{\circ }}-\theta \right)=\cot \theta \]
The relation between sine and sine are given by
\[\sin \left( {{90}^{\circ }}-\theta \right)=\cos \theta \]
We can convert tangent and cotangent of an angle $\theta $ using the identity
\[\tan \theta =\dfrac{\sin \theta }{\cos \theta },\cot \theta =\dfrac{\cos \theta }{\sin \theta }\]
The difference of sine of angles formula for some angles $C,D$ are given by,
\[\sin C-\sin D=2\cos \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)\]
We are given the expression in tangent of angles from the question as
\[\tan {{9}^{\circ }}-\tan {{27}^{\circ }}-\tan {{63}^{\circ }}+\tan {{81}^{\circ }}\]
We observe that there are two pairs of complementary angles ${{9}^{\circ }},{{81}^{\circ }}$ and ${{27}^{\circ }},{{81}^{\circ }}$. Let us write them close to each other.
\[\begin{align}
& \tan {{9}^{\circ }}-\tan {{27}^{\circ }}-\tan {{63}^{\circ }}+\tan {{81}^{\circ }}=\tan {{9}^{\circ }}+\tan {{81}^{\circ }}-\tan {{27}^{\circ }}-\tan {{63}^{\circ }} \\
& =\tan {{9}^{\circ }}+\tan {{81}^{\circ }}-\left( \tan {{27}^{\circ }}+\tan {{63}^{\circ }} \right) \\
\end{align}\]
We use the relation of complementary angles of tangent and cotangent two complementary angles in the above step for $\theta ={{9}^{\circ }},{{27}^{\circ }}$ and have
\[\begin{align}
& =\tan {{9}^{\circ }}+\tan {{\left( 90-9 \right)}^{\circ }}-\left( \tan {{27}^{\circ }}+\tan {{\left( 90-27 \right)}^{\circ }} \right) \\
& =\tan {{9}^{\circ }}+\cot {{9}^{\circ }}-\left( \tan {{27}^{\circ }}+\cot {{27}^{\circ }} \right) \\
\end{align}\]
Let us convert the tangent and cotangent of the angles in the above step to sine and cosines. We have
\[\begin{align}
&=\dfrac{\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}}+\dfrac{\cos {{9}^{\circ }}}{\sin {{9}^{\circ }}}-\left( \dfrac{\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}}+\dfrac{\cos {{27}^{\circ }}}{\sin {{27}^{\circ }}} \right) \\
&=\dfrac{{{\sin }^{2}}{{9}^{\circ }}+{{\cos }^{2}}{{9}^{\circ }}}{\sin {{9}^{\circ }}\cos {{9}^{\circ }}}-\left( \dfrac{{{\sin }^{2}}{{27}^{\circ }}+{{\cos }^{2}}{{27}^{\circ }}}{\sin {{27}^{\circ }}\cos {{27}^{\circ }}} \right) \\
\end{align}\]
Let use the algebraic identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$ for any acute angle $\theta $ and have
\[=\dfrac{1}{\sin {{9}^{\circ }}\cos {{9}^{\circ }}}-\dfrac{1}{\sin {{27}^{\circ }}\cos {{27}^{\circ }}}\]
Let us multiply 2 in numerator and denominator of the each term at left hand side of the above step and have,
\[=\dfrac{2}{2\sin {{9}^{\circ }}\cos {{9}^{\circ }}}-\dfrac{2}{2\sin {{27}^{\circ }}\cos {{27}^{\circ }}}\]
We use the sine double angle formula for $\theta ={{9}^{\circ }}$ in the first term and for $\theta ={{27}^{\circ }}$ in the second term. We have,
\[\begin{align}
& =\dfrac{2}{\sin \left( 2\times {{9}^{\circ }} \right)}-\dfrac{2}{\sin \left( 2\times {{27}^{\circ }} \right)} \\
& =2\left( \dfrac{1}{\sin {{18}^{\circ }}}-\dfrac{1}{\sin {{54}^{\circ }}} \right) \\
& =2\left( \dfrac{\sin {{54}^{\circ }}-\sin {{18}^{\circ }}}{\sin {{18}^{\circ }}\sin {{54}^{\circ }}} \right) \\
\end{align}\]
We use the complimentary angle relation between sine and cosine in the denominator to have
\[\begin{align}
& =2\left( \dfrac{\sin {{54}^{\circ }}-\sin {{18}^{\circ }}}{\sin {{18}^{\circ }}\sin {{\left( 90-36 \right)}^{\circ }}} \right) \\
& =2\left( \dfrac{\sin {{54}^{\circ }}-\sin {{18}^{\circ }}}{\sin {{18}^{\circ }}\cos {{36}^{\circ }}} \right) \\
\end{align}\]
We use the difference of sine of angles formula for $C={{54}^{\circ }},D={{18}^{\circ }}$in the numerator to have,
\[\begin{align}
&=2\left( \dfrac{2\cos \left( \dfrac{{{54}^{\circ }}+{{18}^{\circ }}}{2} \right)\sin \left( \dfrac{{{54}^{\circ }}-{{18}^{\circ }}}{2} \right)}{\sin {{18}^{\circ }}\cos {{36}^{\circ }}} \right) \\
& =2\left( \dfrac{2\cos {{36}^{\circ }}\sin {{18}^{\circ }}}{\sin {{18}^{\circ }}\cos {{36}^{\circ }}} \right) \\
\end{align}\]
We divide $\sin {{18}^{\circ }}\cos {{36}^{\circ }}$ in the numerator and denominator since $\sin {{18}^{\circ }}\cos {{36}^{\circ }}\ne 0 $. We have,
\[\tan {{9}^{\circ }}-\tan {{27}^{\circ }}-\tan {{63}^{\circ }}+\tan {{81}^{\circ }}=2\times 2=4\]
Note: We can alternatively begin by converting $\cot \theta =\dfrac{1}{\tan \theta }$ and then proceed to use ${{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta .$ We can also begin with tangent sum of angles formula $\tan \left( A+B \right)=\dfrac{\tan A-\tan B}{1-\tan A\cdot \tan B}$ and then use the value of $\sin {{18}^{\circ }}=\dfrac{4}{\sqrt{5}-1}$ and $\sin {{54}^{\circ }}=\dfrac{4}{\sqrt{5}+1}$ which we can obtain taking sine of the equation $2A+3A={{90}^{\circ }}$ for $A={{18}^{\circ }}$ ad the using $\sin 3A=3\sin A-4{{\sin }^{3}}A$.
Complete step-by-step solution:
We know if there are two complementary angles say $\theta $ and ${{90}^{\circ }}-\theta $ then the relation between tangent and cotangent are given by
\[\tan \left( {{90}^{\circ }}-\theta \right)=\cot \theta \]
The relation between sine and sine are given by
\[\sin \left( {{90}^{\circ }}-\theta \right)=\cos \theta \]
We can convert tangent and cotangent of an angle $\theta $ using the identity
\[\tan \theta =\dfrac{\sin \theta }{\cos \theta },\cot \theta =\dfrac{\cos \theta }{\sin \theta }\]
The difference of sine of angles formula for some angles $C,D$ are given by,
\[\sin C-\sin D=2\cos \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)\]
We are given the expression in tangent of angles from the question as
\[\tan {{9}^{\circ }}-\tan {{27}^{\circ }}-\tan {{63}^{\circ }}+\tan {{81}^{\circ }}\]
We observe that there are two pairs of complementary angles ${{9}^{\circ }},{{81}^{\circ }}$ and ${{27}^{\circ }},{{81}^{\circ }}$. Let us write them close to each other.
\[\begin{align}
& \tan {{9}^{\circ }}-\tan {{27}^{\circ }}-\tan {{63}^{\circ }}+\tan {{81}^{\circ }}=\tan {{9}^{\circ }}+\tan {{81}^{\circ }}-\tan {{27}^{\circ }}-\tan {{63}^{\circ }} \\
& =\tan {{9}^{\circ }}+\tan {{81}^{\circ }}-\left( \tan {{27}^{\circ }}+\tan {{63}^{\circ }} \right) \\
\end{align}\]
We use the relation of complementary angles of tangent and cotangent two complementary angles in the above step for $\theta ={{9}^{\circ }},{{27}^{\circ }}$ and have
\[\begin{align}
& =\tan {{9}^{\circ }}+\tan {{\left( 90-9 \right)}^{\circ }}-\left( \tan {{27}^{\circ }}+\tan {{\left( 90-27 \right)}^{\circ }} \right) \\
& =\tan {{9}^{\circ }}+\cot {{9}^{\circ }}-\left( \tan {{27}^{\circ }}+\cot {{27}^{\circ }} \right) \\
\end{align}\]
Let us convert the tangent and cotangent of the angles in the above step to sine and cosines. We have
\[\begin{align}
&=\dfrac{\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}}+\dfrac{\cos {{9}^{\circ }}}{\sin {{9}^{\circ }}}-\left( \dfrac{\sin {{27}^{\circ }}}{\cos {{27}^{\circ }}}+\dfrac{\cos {{27}^{\circ }}}{\sin {{27}^{\circ }}} \right) \\
&=\dfrac{{{\sin }^{2}}{{9}^{\circ }}+{{\cos }^{2}}{{9}^{\circ }}}{\sin {{9}^{\circ }}\cos {{9}^{\circ }}}-\left( \dfrac{{{\sin }^{2}}{{27}^{\circ }}+{{\cos }^{2}}{{27}^{\circ }}}{\sin {{27}^{\circ }}\cos {{27}^{\circ }}} \right) \\
\end{align}\]
Let use the algebraic identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$ for any acute angle $\theta $ and have
\[=\dfrac{1}{\sin {{9}^{\circ }}\cos {{9}^{\circ }}}-\dfrac{1}{\sin {{27}^{\circ }}\cos {{27}^{\circ }}}\]
Let us multiply 2 in numerator and denominator of the each term at left hand side of the above step and have,
\[=\dfrac{2}{2\sin {{9}^{\circ }}\cos {{9}^{\circ }}}-\dfrac{2}{2\sin {{27}^{\circ }}\cos {{27}^{\circ }}}\]
We use the sine double angle formula for $\theta ={{9}^{\circ }}$ in the first term and for $\theta ={{27}^{\circ }}$ in the second term. We have,
\[\begin{align}
& =\dfrac{2}{\sin \left( 2\times {{9}^{\circ }} \right)}-\dfrac{2}{\sin \left( 2\times {{27}^{\circ }} \right)} \\
& =2\left( \dfrac{1}{\sin {{18}^{\circ }}}-\dfrac{1}{\sin {{54}^{\circ }}} \right) \\
& =2\left( \dfrac{\sin {{54}^{\circ }}-\sin {{18}^{\circ }}}{\sin {{18}^{\circ }}\sin {{54}^{\circ }}} \right) \\
\end{align}\]
We use the complimentary angle relation between sine and cosine in the denominator to have
\[\begin{align}
& =2\left( \dfrac{\sin {{54}^{\circ }}-\sin {{18}^{\circ }}}{\sin {{18}^{\circ }}\sin {{\left( 90-36 \right)}^{\circ }}} \right) \\
& =2\left( \dfrac{\sin {{54}^{\circ }}-\sin {{18}^{\circ }}}{\sin {{18}^{\circ }}\cos {{36}^{\circ }}} \right) \\
\end{align}\]
We use the difference of sine of angles formula for $C={{54}^{\circ }},D={{18}^{\circ }}$in the numerator to have,
\[\begin{align}
&=2\left( \dfrac{2\cos \left( \dfrac{{{54}^{\circ }}+{{18}^{\circ }}}{2} \right)\sin \left( \dfrac{{{54}^{\circ }}-{{18}^{\circ }}}{2} \right)}{\sin {{18}^{\circ }}\cos {{36}^{\circ }}} \right) \\
& =2\left( \dfrac{2\cos {{36}^{\circ }}\sin {{18}^{\circ }}}{\sin {{18}^{\circ }}\cos {{36}^{\circ }}} \right) \\
\end{align}\]
We divide $\sin {{18}^{\circ }}\cos {{36}^{\circ }}$ in the numerator and denominator since $\sin {{18}^{\circ }}\cos {{36}^{\circ }}\ne 0 $. We have,
\[\tan {{9}^{\circ }}-\tan {{27}^{\circ }}-\tan {{63}^{\circ }}+\tan {{81}^{\circ }}=2\times 2=4\]
Note: We can alternatively begin by converting $\cot \theta =\dfrac{1}{\tan \theta }$ and then proceed to use ${{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta .$ We can also begin with tangent sum of angles formula $\tan \left( A+B \right)=\dfrac{\tan A-\tan B}{1-\tan A\cdot \tan B}$ and then use the value of $\sin {{18}^{\circ }}=\dfrac{4}{\sqrt{5}-1}$ and $\sin {{54}^{\circ }}=\dfrac{4}{\sqrt{5}+1}$ which we can obtain taking sine of the equation $2A+3A={{90}^{\circ }}$ for $A={{18}^{\circ }}$ ad the using $\sin 3A=3\sin A-4{{\sin }^{3}}A$.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

