
Find the value of \[\sum\limits_{k=1}^{8}{\left[ \left( \dfrac{\cos 2k\pi }{9}+i\dfrac{\sin 2k\pi }{9} \right) \right]}\]
Answer
555.3k+ views
Hint: Open up the summation for each value of k(i.e. from 1 to 8) and compare it with the expression for the 9th root of unity, as given below, to obtain the answer.
$1+w+{{w}^{2}}+{{w}^{3}}+{{w}^{4}}+{{w}^{5}}+{{w}^{6}}+{{w}^{7}}+{{w}^{8}}=0$
Complete step-by-step answer:
\[\sum\limits_{k=1}^{8}{\left[ \left( \dfrac{\cos 2k\pi }{9}+i\dfrac{\sin 2k\pi }{9} \right) \right]}\]
We know that 9th roots of unit are $1+w+{{w}^{2}}+{{w}^{3}}+{{w}^{4}}+{{w}^{5}}+{{w}^{6}}+{{w}^{7}}+{{w}^{8}}$
Sum of roots
$1+w+{{w}^{2}}+{{w}^{3}}+{{w}^{4}}+{{w}^{5}}+{{w}^{6}}+{{w}^{7}}+{{w}^{8}}=0$
$w+{{w}^{2}}+{{w}^{3}}+{{w}^{4}}+{{w}^{5}}+{{w}^{6}}+{{w}^{7}}+{{w}^{8}}=-1$
$\therefore \text{ if k=1}$
\[\begin{align}
& \cos \dfrac{2\left( 1 \right)\pi }{9}+i\text{ }\sin \dfrac{2\left( 1 \right)\pi }{9} \\
& =\cos \dfrac{2\pi }{9}+\text{ }i\text{ }\sin \dfrac{2\pi }{9} \\
& =w \\
\end{align}\]
If $\begin{align}
& k=2 \\
& \\
\end{align}$
\[\begin{align}
& \cos \dfrac{2\left( 2 \right)\pi }{9}+i\text{ }\sin \dfrac{2\left( 2 \right)\pi }{9} \\
& =\cos \dfrac{4\pi }{9}+\text{ }i\text{ }\sin \dfrac{4\pi }{9} \\
& ={{w}^{2}} \\
\end{align}\]
If $k=3$ then ${{w}^{3}}$
If $k=4$ then ${{w}^{4}}$
If $k=5$ then ${{w}^{5}}$
If $k=6$ then ${{w}^{6}}$
If $k=7$ then ${{w}^{7}}$
If $k=8$ then ${{w}^{8}}$
Solved as,
\[\begin{align}
& \cos \dfrac{2\left( 8 \right)\pi }{9}+i\text{ }\sin \dfrac{2\left( 8 \right)\pi }{9} \\
& =\cos \dfrac{16\pi }{9}+\text{ }i\text{ }\sin \dfrac{16\pi }{9} \\
& ={{w}^{8}} \\
\end{align}\]
The sum of all the terms
\[\sum\limits_{k=1}^{8}{\left[ \cos \left( \dfrac{2k\pi }{9} \right)+i\text{ }\sin \left( \dfrac{2k\pi }{9} \right) \right]}=-1\]
Note: $1,w\text{ and }{{\text{w}}^{2}}$ represents the cube roots of units and also
$1+w+{{w}^{2}}=0$
Some important properties of cube roots of units are:
Property 1: Among the three cube roots of unity one of the cube roots is real and the other two are conjugate complex numbers.
Property 2: Square of any one imaginary cube root of unity is equal to the other imaginary cube root of unity.
$1+w+{{w}^{2}}+{{w}^{3}}+{{w}^{4}}+{{w}^{5}}+{{w}^{6}}+{{w}^{7}}+{{w}^{8}}=0$
Complete step-by-step answer:
\[\sum\limits_{k=1}^{8}{\left[ \left( \dfrac{\cos 2k\pi }{9}+i\dfrac{\sin 2k\pi }{9} \right) \right]}\]
We know that 9th roots of unit are $1+w+{{w}^{2}}+{{w}^{3}}+{{w}^{4}}+{{w}^{5}}+{{w}^{6}}+{{w}^{7}}+{{w}^{8}}$
Sum of roots
$1+w+{{w}^{2}}+{{w}^{3}}+{{w}^{4}}+{{w}^{5}}+{{w}^{6}}+{{w}^{7}}+{{w}^{8}}=0$
$w+{{w}^{2}}+{{w}^{3}}+{{w}^{4}}+{{w}^{5}}+{{w}^{6}}+{{w}^{7}}+{{w}^{8}}=-1$
$\therefore \text{ if k=1}$
\[\begin{align}
& \cos \dfrac{2\left( 1 \right)\pi }{9}+i\text{ }\sin \dfrac{2\left( 1 \right)\pi }{9} \\
& =\cos \dfrac{2\pi }{9}+\text{ }i\text{ }\sin \dfrac{2\pi }{9} \\
& =w \\
\end{align}\]
If $\begin{align}
& k=2 \\
& \\
\end{align}$
\[\begin{align}
& \cos \dfrac{2\left( 2 \right)\pi }{9}+i\text{ }\sin \dfrac{2\left( 2 \right)\pi }{9} \\
& =\cos \dfrac{4\pi }{9}+\text{ }i\text{ }\sin \dfrac{4\pi }{9} \\
& ={{w}^{2}} \\
\end{align}\]
If $k=3$ then ${{w}^{3}}$
If $k=4$ then ${{w}^{4}}$
If $k=5$ then ${{w}^{5}}$
If $k=6$ then ${{w}^{6}}$
If $k=7$ then ${{w}^{7}}$
If $k=8$ then ${{w}^{8}}$
Solved as,
\[\begin{align}
& \cos \dfrac{2\left( 8 \right)\pi }{9}+i\text{ }\sin \dfrac{2\left( 8 \right)\pi }{9} \\
& =\cos \dfrac{16\pi }{9}+\text{ }i\text{ }\sin \dfrac{16\pi }{9} \\
& ={{w}^{8}} \\
\end{align}\]
The sum of all the terms
\[\sum\limits_{k=1}^{8}{\left[ \cos \left( \dfrac{2k\pi }{9} \right)+i\text{ }\sin \left( \dfrac{2k\pi }{9} \right) \right]}=-1\]
Note: $1,w\text{ and }{{\text{w}}^{2}}$ represents the cube roots of units and also
$1+w+{{w}^{2}}=0$
Some important properties of cube roots of units are:
Property 1: Among the three cube roots of unity one of the cube roots is real and the other two are conjugate complex numbers.
Property 2: Square of any one imaginary cube root of unity is equal to the other imaginary cube root of unity.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

