Find the value of $ \sqrt {4{{\cos }^4}\theta + {{\sin }^2}2\theta } + 4\cot \theta {\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)$, if \[\dfrac{\pi }{2} < \theta < \dfrac{{3\pi }}{2}\].
A) $2\sin \theta $
B) $ - 2\sin \theta $
C) $2\cot \theta $
D) $ - 2\cot \theta $
Answer
Verified
469.8k+ views
Hint: we can solve this problem by the simplifying given term.
Here we can use some trigonometric formulas.
1) $\sin 2\theta = 2\sin \theta \cos \theta $
2) $\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B$
3) $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$
4) ${\sin ^2}\theta + {\cos ^2}\theta = 1$
Complete step by step answer:
1) Let us simplify the given term.
We have,
$ = \sqrt {4{{\cos }^4}\theta + {{\sin }^2}2\theta } + 4\cot \theta {\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)$
Let us simplify first the terms in the square root.
We can use 1) formula.
We get,
$ \Rightarrow \sqrt {4{{\cos }^4}\theta + {{\left( {2\sin \theta \cos \theta } \right)}^2}} + 4\cot \theta {\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)$
Simplify the remaining term.
Let us use 2) formula.
Now we get,
$ \Rightarrow \sqrt {4{{\cos }^4}\theta + {{\left( {2\sin \theta \cos \theta } \right)}^2}} + 4\cot \theta {\left[ {\cos \dfrac{\pi }{4}\cos \dfrac{\theta }{2} + \sin \dfrac{\pi }{4}\sin \dfrac{\theta }{2}} \right]^2}$
Now, we can put the values of cos and sin.
As we know the values of, $\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$ and$\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$.
Substitute these values.
$ \Rightarrow \sqrt {4{{\cos }^4}\theta + {{\left( {2\sin \theta \cos \theta } \right)}^2}} + 4\cot \theta {\left[ {\dfrac{1}{{\sqrt 2 }}\cos \dfrac{\theta }{2} + \dfrac{1}{{\sqrt 2 }}\sin \dfrac{\theta }{2}} \right]^2}$
Consider the term which is under the square root and is in the bracket.
Take the square of that term.
See, $\dfrac{1}{{\sqrt 2 }}$ is in both the terms.
So, let us write it outside the bracket as a common term.
So we get,
$ \Rightarrow \sqrt {4{{\cos }^4}\theta + \left( {4{{\sin }^2}\theta {{\cos }^2}\theta } \right)} + \dfrac{4}{{{{\left( {\sqrt 2 } \right)}^2}}}\cot \theta {\left[ {\cos \left( {\dfrac{\theta }{2}} \right) + \sin \left( {\dfrac{\theta }{2}} \right)} \right]^2}$
Consider the term which is under the square root.
Let us take common terms outside the bracket.
So we get,
$ \Rightarrow \sqrt {4{{\cos }^2}\theta \left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)} + \dfrac{4}{{{{\left( {\sqrt 2 } \right)}^2}}}\cot \theta {\left[ {\cos \left( {\dfrac{\theta }{2}} \right) + \sin \left( {\dfrac{\theta }{2}} \right)} \right]^2}$
While removing the square root so, the value which is in the square root will be in the mod.
After that, we will use the formula to simplify the bracket:${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$.
$ \Rightarrow \left| {2\cos \theta \left( 1 \right)} \right| + \dfrac{4}{2}\cot \theta \left[ {{{\cos }^2}\left( {\dfrac{\theta }{2}} \right) + {{\sin }^2}\left( {\dfrac{\theta }{2}} \right) + 2\sin \left( {\dfrac{\theta }{2}} \right)\cos \left( {\dfrac{\theta }{2}} \right)} \right]$
Use the fourth formula which is in the hint.
$ \Rightarrow \left| {2\cos \theta } \right| + 2\cot \theta \left[ {1 + \sin \theta } \right]$
Simplify the bracket.
$ \Rightarrow \left| {2\cos \theta } \right| + 2\cot \theta + 2\cot \theta \sin \theta $
As we know, $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$.
$ \Rightarrow \left| {2\cos \theta } \right| + 2\cot \theta + 2\dfrac{{\cos \theta }}{{\sin \theta }}\sin \theta $
Here, $\sin \theta $ get cancelled.
$ \Rightarrow 2\left[ {\left| {\cos \theta } \right| + \cot \theta + \cos \theta } \right]$
In both the 2 & 3 quadrants we have given the value of cos is negative.
As the first cos is in the mod. So, there is no need to change the sign of that term.
$ \Rightarrow 2\left[ {\left| {\cos \theta } \right| + \cot \theta - \cos \theta } \right]$
$ \Rightarrow 2\left[ {\cot \theta } \right]$
$ \Rightarrow 2\cot \theta $
Therefore, option (C) is the correct answer.
Note:
- To solve this kind of problem, students should be familiar with trigonometric basic formulas, identities, reciprocal identities, angle sum & difference identities.
- Students should know about trigonometric functions and the signs of main trigonometric functions sin, cos, tan in different quadrants.
- Important thing is that students should know the values of all trigonometric functions at various degrees.
Here we can use some trigonometric formulas.
1) $\sin 2\theta = 2\sin \theta \cos \theta $
2) $\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B$
3) $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$
4) ${\sin ^2}\theta + {\cos ^2}\theta = 1$
Complete step by step answer:
1) Let us simplify the given term.
We have,
$ = \sqrt {4{{\cos }^4}\theta + {{\sin }^2}2\theta } + 4\cot \theta {\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)$
Let us simplify first the terms in the square root.
We can use 1) formula.
We get,
$ \Rightarrow \sqrt {4{{\cos }^4}\theta + {{\left( {2\sin \theta \cos \theta } \right)}^2}} + 4\cot \theta {\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)$
Simplify the remaining term.
Let us use 2) formula.
Now we get,
$ \Rightarrow \sqrt {4{{\cos }^4}\theta + {{\left( {2\sin \theta \cos \theta } \right)}^2}} + 4\cot \theta {\left[ {\cos \dfrac{\pi }{4}\cos \dfrac{\theta }{2} + \sin \dfrac{\pi }{4}\sin \dfrac{\theta }{2}} \right]^2}$
Now, we can put the values of cos and sin.
As we know the values of, $\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$ and$\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$.
Substitute these values.
$ \Rightarrow \sqrt {4{{\cos }^4}\theta + {{\left( {2\sin \theta \cos \theta } \right)}^2}} + 4\cot \theta {\left[ {\dfrac{1}{{\sqrt 2 }}\cos \dfrac{\theta }{2} + \dfrac{1}{{\sqrt 2 }}\sin \dfrac{\theta }{2}} \right]^2}$
Consider the term which is under the square root and is in the bracket.
Take the square of that term.
See, $\dfrac{1}{{\sqrt 2 }}$ is in both the terms.
So, let us write it outside the bracket as a common term.
So we get,
$ \Rightarrow \sqrt {4{{\cos }^4}\theta + \left( {4{{\sin }^2}\theta {{\cos }^2}\theta } \right)} + \dfrac{4}{{{{\left( {\sqrt 2 } \right)}^2}}}\cot \theta {\left[ {\cos \left( {\dfrac{\theta }{2}} \right) + \sin \left( {\dfrac{\theta }{2}} \right)} \right]^2}$
Consider the term which is under the square root.
Let us take common terms outside the bracket.
So we get,
$ \Rightarrow \sqrt {4{{\cos }^2}\theta \left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)} + \dfrac{4}{{{{\left( {\sqrt 2 } \right)}^2}}}\cot \theta {\left[ {\cos \left( {\dfrac{\theta }{2}} \right) + \sin \left( {\dfrac{\theta }{2}} \right)} \right]^2}$
While removing the square root so, the value which is in the square root will be in the mod.
After that, we will use the formula to simplify the bracket:${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$.
$ \Rightarrow \left| {2\cos \theta \left( 1 \right)} \right| + \dfrac{4}{2}\cot \theta \left[ {{{\cos }^2}\left( {\dfrac{\theta }{2}} \right) + {{\sin }^2}\left( {\dfrac{\theta }{2}} \right) + 2\sin \left( {\dfrac{\theta }{2}} \right)\cos \left( {\dfrac{\theta }{2}} \right)} \right]$
Use the fourth formula which is in the hint.
$ \Rightarrow \left| {2\cos \theta } \right| + 2\cot \theta \left[ {1 + \sin \theta } \right]$
Simplify the bracket.
$ \Rightarrow \left| {2\cos \theta } \right| + 2\cot \theta + 2\cot \theta \sin \theta $
As we know, $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$.
$ \Rightarrow \left| {2\cos \theta } \right| + 2\cot \theta + 2\dfrac{{\cos \theta }}{{\sin \theta }}\sin \theta $
Here, $\sin \theta $ get cancelled.
$ \Rightarrow 2\left[ {\left| {\cos \theta } \right| + \cot \theta + \cos \theta } \right]$
In both the 2 & 3 quadrants we have given the value of cos is negative.
As the first cos is in the mod. So, there is no need to change the sign of that term.
$ \Rightarrow 2\left[ {\left| {\cos \theta } \right| + \cot \theta - \cos \theta } \right]$
$ \Rightarrow 2\left[ {\cot \theta } \right]$
$ \Rightarrow 2\cot \theta $
Therefore, option (C) is the correct answer.
Note:
- To solve this kind of problem, students should be familiar with trigonometric basic formulas, identities, reciprocal identities, angle sum & difference identities.
- Students should know about trigonometric functions and the signs of main trigonometric functions sin, cos, tan in different quadrants.
- Important thing is that students should know the values of all trigonometric functions at various degrees.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
What is Commercial Farming ? What are its types ? Explain them with Examples
Imagine that you have the opportunity to interview class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE
Fill the blanks with proper collective nouns 1 A of class 10 english CBSE
The allots symbols to the recognized political parties class 10 social science CBSE
Find the mode of the data using an empirical formula class 10 maths CBSE