
Find the value of $ \sqrt {4{{\cos }^4}\theta + {{\sin }^2}2\theta } + 4\cot \theta {\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)$, if \[\dfrac{\pi }{2} < \theta < \dfrac{{3\pi }}{2}\].
A) $2\sin \theta $
B) $ - 2\sin \theta $
C) $2\cot \theta $
D) $ - 2\cot \theta $
Answer
583.5k+ views
Hint: we can solve this problem by the simplifying given term.
Here we can use some trigonometric formulas.
1) $\sin 2\theta = 2\sin \theta \cos \theta $
2) $\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B$
3) $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$
4) ${\sin ^2}\theta + {\cos ^2}\theta = 1$
Complete step by step answer:
1) Let us simplify the given term.
We have,
$ = \sqrt {4{{\cos }^4}\theta + {{\sin }^2}2\theta } + 4\cot \theta {\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)$
Let us simplify first the terms in the square root.
We can use 1) formula.
We get,
$ \Rightarrow \sqrt {4{{\cos }^4}\theta + {{\left( {2\sin \theta \cos \theta } \right)}^2}} + 4\cot \theta {\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)$
Simplify the remaining term.
Let us use 2) formula.
Now we get,
$ \Rightarrow \sqrt {4{{\cos }^4}\theta + {{\left( {2\sin \theta \cos \theta } \right)}^2}} + 4\cot \theta {\left[ {\cos \dfrac{\pi }{4}\cos \dfrac{\theta }{2} + \sin \dfrac{\pi }{4}\sin \dfrac{\theta }{2}} \right]^2}$
Now, we can put the values of cos and sin.
As we know the values of, $\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$ and$\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$.
Substitute these values.
$ \Rightarrow \sqrt {4{{\cos }^4}\theta + {{\left( {2\sin \theta \cos \theta } \right)}^2}} + 4\cot \theta {\left[ {\dfrac{1}{{\sqrt 2 }}\cos \dfrac{\theta }{2} + \dfrac{1}{{\sqrt 2 }}\sin \dfrac{\theta }{2}} \right]^2}$
Consider the term which is under the square root and is in the bracket.
Take the square of that term.
See, $\dfrac{1}{{\sqrt 2 }}$ is in both the terms.
So, let us write it outside the bracket as a common term.
So we get,
$ \Rightarrow \sqrt {4{{\cos }^4}\theta + \left( {4{{\sin }^2}\theta {{\cos }^2}\theta } \right)} + \dfrac{4}{{{{\left( {\sqrt 2 } \right)}^2}}}\cot \theta {\left[ {\cos \left( {\dfrac{\theta }{2}} \right) + \sin \left( {\dfrac{\theta }{2}} \right)} \right]^2}$
Consider the term which is under the square root.
Let us take common terms outside the bracket.
So we get,
$ \Rightarrow \sqrt {4{{\cos }^2}\theta \left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)} + \dfrac{4}{{{{\left( {\sqrt 2 } \right)}^2}}}\cot \theta {\left[ {\cos \left( {\dfrac{\theta }{2}} \right) + \sin \left( {\dfrac{\theta }{2}} \right)} \right]^2}$
While removing the square root so, the value which is in the square root will be in the mod.
After that, we will use the formula to simplify the bracket:${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$.
$ \Rightarrow \left| {2\cos \theta \left( 1 \right)} \right| + \dfrac{4}{2}\cot \theta \left[ {{{\cos }^2}\left( {\dfrac{\theta }{2}} \right) + {{\sin }^2}\left( {\dfrac{\theta }{2}} \right) + 2\sin \left( {\dfrac{\theta }{2}} \right)\cos \left( {\dfrac{\theta }{2}} \right)} \right]$
Use the fourth formula which is in the hint.
$ \Rightarrow \left| {2\cos \theta } \right| + 2\cot \theta \left[ {1 + \sin \theta } \right]$
Simplify the bracket.
$ \Rightarrow \left| {2\cos \theta } \right| + 2\cot \theta + 2\cot \theta \sin \theta $
As we know, $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$.
$ \Rightarrow \left| {2\cos \theta } \right| + 2\cot \theta + 2\dfrac{{\cos \theta }}{{\sin \theta }}\sin \theta $
Here, $\sin \theta $ get cancelled.
$ \Rightarrow 2\left[ {\left| {\cos \theta } \right| + \cot \theta + \cos \theta } \right]$
In both the 2 & 3 quadrants we have given the value of cos is negative.
As the first cos is in the mod. So, there is no need to change the sign of that term.
$ \Rightarrow 2\left[ {\left| {\cos \theta } \right| + \cot \theta - \cos \theta } \right]$
$ \Rightarrow 2\left[ {\cot \theta } \right]$
$ \Rightarrow 2\cot \theta $
Therefore, option (C) is the correct answer.
Note:
- To solve this kind of problem, students should be familiar with trigonometric basic formulas, identities, reciprocal identities, angle sum & difference identities.
- Students should know about trigonometric functions and the signs of main trigonometric functions sin, cos, tan in different quadrants.
- Important thing is that students should know the values of all trigonometric functions at various degrees.
Here we can use some trigonometric formulas.
1) $\sin 2\theta = 2\sin \theta \cos \theta $
2) $\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B$
3) $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$
4) ${\sin ^2}\theta + {\cos ^2}\theta = 1$
Complete step by step answer:
1) Let us simplify the given term.
We have,
$ = \sqrt {4{{\cos }^4}\theta + {{\sin }^2}2\theta } + 4\cot \theta {\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)$
Let us simplify first the terms in the square root.
We can use 1) formula.
We get,
$ \Rightarrow \sqrt {4{{\cos }^4}\theta + {{\left( {2\sin \theta \cos \theta } \right)}^2}} + 4\cot \theta {\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)$
Simplify the remaining term.
Let us use 2) formula.
Now we get,
$ \Rightarrow \sqrt {4{{\cos }^4}\theta + {{\left( {2\sin \theta \cos \theta } \right)}^2}} + 4\cot \theta {\left[ {\cos \dfrac{\pi }{4}\cos \dfrac{\theta }{2} + \sin \dfrac{\pi }{4}\sin \dfrac{\theta }{2}} \right]^2}$
Now, we can put the values of cos and sin.
As we know the values of, $\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$ and$\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$.
Substitute these values.
$ \Rightarrow \sqrt {4{{\cos }^4}\theta + {{\left( {2\sin \theta \cos \theta } \right)}^2}} + 4\cot \theta {\left[ {\dfrac{1}{{\sqrt 2 }}\cos \dfrac{\theta }{2} + \dfrac{1}{{\sqrt 2 }}\sin \dfrac{\theta }{2}} \right]^2}$
Consider the term which is under the square root and is in the bracket.
Take the square of that term.
See, $\dfrac{1}{{\sqrt 2 }}$ is in both the terms.
So, let us write it outside the bracket as a common term.
So we get,
$ \Rightarrow \sqrt {4{{\cos }^4}\theta + \left( {4{{\sin }^2}\theta {{\cos }^2}\theta } \right)} + \dfrac{4}{{{{\left( {\sqrt 2 } \right)}^2}}}\cot \theta {\left[ {\cos \left( {\dfrac{\theta }{2}} \right) + \sin \left( {\dfrac{\theta }{2}} \right)} \right]^2}$
Consider the term which is under the square root.
Let us take common terms outside the bracket.
So we get,
$ \Rightarrow \sqrt {4{{\cos }^2}\theta \left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)} + \dfrac{4}{{{{\left( {\sqrt 2 } \right)}^2}}}\cot \theta {\left[ {\cos \left( {\dfrac{\theta }{2}} \right) + \sin \left( {\dfrac{\theta }{2}} \right)} \right]^2}$
While removing the square root so, the value which is in the square root will be in the mod.
After that, we will use the formula to simplify the bracket:${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$.
$ \Rightarrow \left| {2\cos \theta \left( 1 \right)} \right| + \dfrac{4}{2}\cot \theta \left[ {{{\cos }^2}\left( {\dfrac{\theta }{2}} \right) + {{\sin }^2}\left( {\dfrac{\theta }{2}} \right) + 2\sin \left( {\dfrac{\theta }{2}} \right)\cos \left( {\dfrac{\theta }{2}} \right)} \right]$
Use the fourth formula which is in the hint.
$ \Rightarrow \left| {2\cos \theta } \right| + 2\cot \theta \left[ {1 + \sin \theta } \right]$
Simplify the bracket.
$ \Rightarrow \left| {2\cos \theta } \right| + 2\cot \theta + 2\cot \theta \sin \theta $
As we know, $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$.
$ \Rightarrow \left| {2\cos \theta } \right| + 2\cot \theta + 2\dfrac{{\cos \theta }}{{\sin \theta }}\sin \theta $
Here, $\sin \theta $ get cancelled.
$ \Rightarrow 2\left[ {\left| {\cos \theta } \right| + \cot \theta + \cos \theta } \right]$
In both the 2 & 3 quadrants we have given the value of cos is negative.
As the first cos is in the mod. So, there is no need to change the sign of that term.
$ \Rightarrow 2\left[ {\left| {\cos \theta } \right| + \cot \theta - \cos \theta } \right]$
$ \Rightarrow 2\left[ {\cot \theta } \right]$
$ \Rightarrow 2\cot \theta $
Therefore, option (C) is the correct answer.
Note:
- To solve this kind of problem, students should be familiar with trigonometric basic formulas, identities, reciprocal identities, angle sum & difference identities.
- Students should know about trigonometric functions and the signs of main trigonometric functions sin, cos, tan in different quadrants.
- Important thing is that students should know the values of all trigonometric functions at various degrees.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

