
Find the value of \[\sinh \left( {{{\cosh }^{ - 1}}x} \right)\].
A. \[\sqrt {{x^2} + 1} \]
B. \[\dfrac{1}{{\sqrt {{x^2} + 1} }}\]
C. \[\sqrt {{x^2} - 1} \]
D. \[\dfrac{1}{{\sqrt {{x^2} - 1} }}\]
Answer
510k+ views
Hint: Here, we will first use the formula \[{\cosh ^{ - 1}}x = \ln \left( {x + \sqrt {{x^2} - 1} } \right)\] in the given equation and then we will use the formula of hyperbolic sine function, \[\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2}\]. Then we will simplify the obtained equation using the properties of trigonometric functions to find the required value.
Complete step by step answer:
We are given that the equation is \[\sinh \left( {{{\cosh }^{ - 1}}x} \right)\].
Using the formula \[{\cosh ^{ - 1}}x = \ln \left( {x + \sqrt {{x^2} - 1} } \right)\] in the above equation, we get\[ \Rightarrow \sinh \left( {\ln \left( {x + \sqrt {{x^2} - 1} } \right)} \right)\]
Using the formula of hyperbolic sine function, \[\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2}\] in the above equation, we get
\[ \Rightarrow \dfrac{{{e^{\ln \left( {x + \sqrt {{x^2} - 1} } \right)}} - {e^{i\ln \left( {x + \sqrt {{x^2} - 1} } \right)}}}}{2}\]
Using the value, that is, \[{e^{\ln x}} = x\] in the above equation, we get
\[
\Rightarrow \dfrac{{x + \sqrt {{x^2} - 1} - \dfrac{1}{{x + \sqrt {{x^2} - 1} }}}}{2} \\
\Rightarrow \dfrac{{\dfrac{{{{\left( {x + \sqrt {{x^2} - 1} } \right)}^2} - 1}}{{x + \sqrt {{x^2} - 1} }}}}{2} \\
\Rightarrow \dfrac{{{{\left( {x + \sqrt {{x^2} - 1} } \right)}^2} - 1}}{{2\left( {x + \sqrt {{x^2} - 1} } \right)}} \\
\]
Using the formula of trigonometric functions, \[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\] in the above equation, we get
\[
\Rightarrow \dfrac{{{x^2} + {{\left( {\sqrt {{x^2} - 1} } \right)}^2} - 1}}{{2\left( {x + \sqrt {{x^2} - 1} } \right)}} \\
\Rightarrow \dfrac{{{x^2} + {x^2} - 1 + 2x\sqrt {{x^2} - 1} - 1}}{{2\left( {x + \sqrt {{x^2} - 1} } \right)}} \\
\Rightarrow \dfrac{{2{x^2} - 2 + 2x\sqrt {{x^2} - 1} }}{{2\left( {x + \sqrt {{x^2} - 1} } \right)}} \\
\Rightarrow \dfrac{{2\left( {{x^2} - 1 + x\sqrt {{x^2} - 1} } \right)}}{{2\left( {x + \sqrt {{x^2} - 1} } \right)}} \\
\Rightarrow \dfrac{{\left( {{x^2} - 1} \right) + x\sqrt {{x^2} - 1} }}{{2\left( {x + \sqrt {{x^2} - 1} } \right)}} \\
\]
Taking \[\sqrt {{x^2} - 1} \] common from the numerator of the above equation, we get
\[
\Rightarrow \sqrt {{x^2} - 1} \left( {\dfrac{{x + \sqrt {{x^2} - 1} }}{{x + \sqrt {{x^2} - 1} }}} \right) \\
\Rightarrow \sqrt {{x^2} - 1} \\
\]
Hence, option D is correct.
Note: In solving these types of questions, the key concept is to have a good understanding of the basic trigonometric values and learn how to use the values from trigonometric tables. Students should have a grasp of trigonometric values, for simplifying the given equation. If we have a root number in the denominator then we will rationalize it. We will divide the numerator and denominator of the fraction by the same number it does not change it. Avoid calculation mistakes.
Complete step by step answer:
We are given that the equation is \[\sinh \left( {{{\cosh }^{ - 1}}x} \right)\].
Using the formula \[{\cosh ^{ - 1}}x = \ln \left( {x + \sqrt {{x^2} - 1} } \right)\] in the above equation, we get\[ \Rightarrow \sinh \left( {\ln \left( {x + \sqrt {{x^2} - 1} } \right)} \right)\]
Using the formula of hyperbolic sine function, \[\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2}\] in the above equation, we get
\[ \Rightarrow \dfrac{{{e^{\ln \left( {x + \sqrt {{x^2} - 1} } \right)}} - {e^{i\ln \left( {x + \sqrt {{x^2} - 1} } \right)}}}}{2}\]
Using the value, that is, \[{e^{\ln x}} = x\] in the above equation, we get
\[
\Rightarrow \dfrac{{x + \sqrt {{x^2} - 1} - \dfrac{1}{{x + \sqrt {{x^2} - 1} }}}}{2} \\
\Rightarrow \dfrac{{\dfrac{{{{\left( {x + \sqrt {{x^2} - 1} } \right)}^2} - 1}}{{x + \sqrt {{x^2} - 1} }}}}{2} \\
\Rightarrow \dfrac{{{{\left( {x + \sqrt {{x^2} - 1} } \right)}^2} - 1}}{{2\left( {x + \sqrt {{x^2} - 1} } \right)}} \\
\]
Using the formula of trigonometric functions, \[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\] in the above equation, we get
\[
\Rightarrow \dfrac{{{x^2} + {{\left( {\sqrt {{x^2} - 1} } \right)}^2} - 1}}{{2\left( {x + \sqrt {{x^2} - 1} } \right)}} \\
\Rightarrow \dfrac{{{x^2} + {x^2} - 1 + 2x\sqrt {{x^2} - 1} - 1}}{{2\left( {x + \sqrt {{x^2} - 1} } \right)}} \\
\Rightarrow \dfrac{{2{x^2} - 2 + 2x\sqrt {{x^2} - 1} }}{{2\left( {x + \sqrt {{x^2} - 1} } \right)}} \\
\Rightarrow \dfrac{{2\left( {{x^2} - 1 + x\sqrt {{x^2} - 1} } \right)}}{{2\left( {x + \sqrt {{x^2} - 1} } \right)}} \\
\Rightarrow \dfrac{{\left( {{x^2} - 1} \right) + x\sqrt {{x^2} - 1} }}{{2\left( {x + \sqrt {{x^2} - 1} } \right)}} \\
\]
Taking \[\sqrt {{x^2} - 1} \] common from the numerator of the above equation, we get
\[
\Rightarrow \sqrt {{x^2} - 1} \left( {\dfrac{{x + \sqrt {{x^2} - 1} }}{{x + \sqrt {{x^2} - 1} }}} \right) \\
\Rightarrow \sqrt {{x^2} - 1} \\
\]
Hence, option D is correct.
Note: In solving these types of questions, the key concept is to have a good understanding of the basic trigonometric values and learn how to use the values from trigonometric tables. Students should have a grasp of trigonometric values, for simplifying the given equation. If we have a root number in the denominator then we will rationalize it. We will divide the numerator and denominator of the fraction by the same number it does not change it. Avoid calculation mistakes.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
