
Find the value of \[\sinh \left( {{{\cosh }^{ - 1}}x} \right)\].
A. \[\sqrt {{x^2} + 1} \]
B. \[\dfrac{1}{{\sqrt {{x^2} + 1} }}\]
C. \[\sqrt {{x^2} - 1} \]
D. \[\dfrac{1}{{\sqrt {{x^2} - 1} }}\]
Answer
589.2k+ views
Hint: Here, we will first use the formula \[{\cosh ^{ - 1}}x = \ln \left( {x + \sqrt {{x^2} - 1} } \right)\] in the given equation and then we will use the formula of hyperbolic sine function, \[\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2}\]. Then we will simplify the obtained equation using the properties of trigonometric functions to find the required value.
Complete step by step answer:
We are given that the equation is \[\sinh \left( {{{\cosh }^{ - 1}}x} \right)\].
Using the formula \[{\cosh ^{ - 1}}x = \ln \left( {x + \sqrt {{x^2} - 1} } \right)\] in the above equation, we get\[ \Rightarrow \sinh \left( {\ln \left( {x + \sqrt {{x^2} - 1} } \right)} \right)\]
Using the formula of hyperbolic sine function, \[\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2}\] in the above equation, we get
\[ \Rightarrow \dfrac{{{e^{\ln \left( {x + \sqrt {{x^2} - 1} } \right)}} - {e^{i\ln \left( {x + \sqrt {{x^2} - 1} } \right)}}}}{2}\]
Using the value, that is, \[{e^{\ln x}} = x\] in the above equation, we get
\[
\Rightarrow \dfrac{{x + \sqrt {{x^2} - 1} - \dfrac{1}{{x + \sqrt {{x^2} - 1} }}}}{2} \\
\Rightarrow \dfrac{{\dfrac{{{{\left( {x + \sqrt {{x^2} - 1} } \right)}^2} - 1}}{{x + \sqrt {{x^2} - 1} }}}}{2} \\
\Rightarrow \dfrac{{{{\left( {x + \sqrt {{x^2} - 1} } \right)}^2} - 1}}{{2\left( {x + \sqrt {{x^2} - 1} } \right)}} \\
\]
Using the formula of trigonometric functions, \[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\] in the above equation, we get
\[
\Rightarrow \dfrac{{{x^2} + {{\left( {\sqrt {{x^2} - 1} } \right)}^2} - 1}}{{2\left( {x + \sqrt {{x^2} - 1} } \right)}} \\
\Rightarrow \dfrac{{{x^2} + {x^2} - 1 + 2x\sqrt {{x^2} - 1} - 1}}{{2\left( {x + \sqrt {{x^2} - 1} } \right)}} \\
\Rightarrow \dfrac{{2{x^2} - 2 + 2x\sqrt {{x^2} - 1} }}{{2\left( {x + \sqrt {{x^2} - 1} } \right)}} \\
\Rightarrow \dfrac{{2\left( {{x^2} - 1 + x\sqrt {{x^2} - 1} } \right)}}{{2\left( {x + \sqrt {{x^2} - 1} } \right)}} \\
\Rightarrow \dfrac{{\left( {{x^2} - 1} \right) + x\sqrt {{x^2} - 1} }}{{2\left( {x + \sqrt {{x^2} - 1} } \right)}} \\
\]
Taking \[\sqrt {{x^2} - 1} \] common from the numerator of the above equation, we get
\[
\Rightarrow \sqrt {{x^2} - 1} \left( {\dfrac{{x + \sqrt {{x^2} - 1} }}{{x + \sqrt {{x^2} - 1} }}} \right) \\
\Rightarrow \sqrt {{x^2} - 1} \\
\]
Hence, option D is correct.
Note: In solving these types of questions, the key concept is to have a good understanding of the basic trigonometric values and learn how to use the values from trigonometric tables. Students should have a grasp of trigonometric values, for simplifying the given equation. If we have a root number in the denominator then we will rationalize it. We will divide the numerator and denominator of the fraction by the same number it does not change it. Avoid calculation mistakes.
Complete step by step answer:
We are given that the equation is \[\sinh \left( {{{\cosh }^{ - 1}}x} \right)\].
Using the formula \[{\cosh ^{ - 1}}x = \ln \left( {x + \sqrt {{x^2} - 1} } \right)\] in the above equation, we get\[ \Rightarrow \sinh \left( {\ln \left( {x + \sqrt {{x^2} - 1} } \right)} \right)\]
Using the formula of hyperbolic sine function, \[\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2}\] in the above equation, we get
\[ \Rightarrow \dfrac{{{e^{\ln \left( {x + \sqrt {{x^2} - 1} } \right)}} - {e^{i\ln \left( {x + \sqrt {{x^2} - 1} } \right)}}}}{2}\]
Using the value, that is, \[{e^{\ln x}} = x\] in the above equation, we get
\[
\Rightarrow \dfrac{{x + \sqrt {{x^2} - 1} - \dfrac{1}{{x + \sqrt {{x^2} - 1} }}}}{2} \\
\Rightarrow \dfrac{{\dfrac{{{{\left( {x + \sqrt {{x^2} - 1} } \right)}^2} - 1}}{{x + \sqrt {{x^2} - 1} }}}}{2} \\
\Rightarrow \dfrac{{{{\left( {x + \sqrt {{x^2} - 1} } \right)}^2} - 1}}{{2\left( {x + \sqrt {{x^2} - 1} } \right)}} \\
\]
Using the formula of trigonometric functions, \[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\] in the above equation, we get
\[
\Rightarrow \dfrac{{{x^2} + {{\left( {\sqrt {{x^2} - 1} } \right)}^2} - 1}}{{2\left( {x + \sqrt {{x^2} - 1} } \right)}} \\
\Rightarrow \dfrac{{{x^2} + {x^2} - 1 + 2x\sqrt {{x^2} - 1} - 1}}{{2\left( {x + \sqrt {{x^2} - 1} } \right)}} \\
\Rightarrow \dfrac{{2{x^2} - 2 + 2x\sqrt {{x^2} - 1} }}{{2\left( {x + \sqrt {{x^2} - 1} } \right)}} \\
\Rightarrow \dfrac{{2\left( {{x^2} - 1 + x\sqrt {{x^2} - 1} } \right)}}{{2\left( {x + \sqrt {{x^2} - 1} } \right)}} \\
\Rightarrow \dfrac{{\left( {{x^2} - 1} \right) + x\sqrt {{x^2} - 1} }}{{2\left( {x + \sqrt {{x^2} - 1} } \right)}} \\
\]
Taking \[\sqrt {{x^2} - 1} \] common from the numerator of the above equation, we get
\[
\Rightarrow \sqrt {{x^2} - 1} \left( {\dfrac{{x + \sqrt {{x^2} - 1} }}{{x + \sqrt {{x^2} - 1} }}} \right) \\
\Rightarrow \sqrt {{x^2} - 1} \\
\]
Hence, option D is correct.
Note: In solving these types of questions, the key concept is to have a good understanding of the basic trigonometric values and learn how to use the values from trigonometric tables. Students should have a grasp of trigonometric values, for simplifying the given equation. If we have a root number in the denominator then we will rationalize it. We will divide the numerator and denominator of the fraction by the same number it does not change it. Avoid calculation mistakes.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

