
Find the value of $\sin \left( \dfrac{x}{2} \right)$ , $\cos \left( \dfrac{x}{2} \right)$ and $\tan \left( \dfrac{x}{2} \right)$ if $\tan \left( x \right)=\dfrac{-4}{3}$ And x is in the second quadrant.
Answer
599.4k+ views
Hint: In this question, we are given the value of tangent of x of the angle and the quadrant in which the angle x lies. Therefore, using the definition of $\tan \left( \dfrac{x}{2} \right)$ , and other trigonometric formulas, we can obtain the values of $\sin \left( \dfrac{x}{2} \right)$ , $\cos \left( \dfrac{x}{2} \right)$ and $\tan \left( \dfrac{x}{2} \right)$ by solving the corresponding trigonometric equations.
Complete step-by-step solution -
In this given question, we are asked to find the value of $\sin \left( \dfrac{x}{2} \right)$ , $\cos \left( \dfrac{x}{2} \right)$ and $\tan \left( \dfrac{x}{2} \right)$ if
$\tan \left( x \right)=\dfrac{-4}{3}$ And x is in the second quadrant.
We know that the formula for finding the tangent of twice an angle is given by
$\tan \left( 2a \right)=\dfrac{2\tan a}{1-{{\tan }^{2}}a}................................(1.1)$
Now, x can be written as $2\times \dfrac{x}{2}$ .
So, putting $2\times \dfrac{x}{2}$ in place of a in equation 1.1, we get,
$\begin{align}
& \tan \left( 2\times \dfrac{x}{2} \right)=\dfrac{2\tan \left( \dfrac{x}{2} \right)}{1-{{\tan }^{2}}\left( \dfrac{x}{2} \right)} \\
& \Rightarrow \tan \left( x \right)=\dfrac{2\tan \left( \dfrac{x}{2} \right)}{1-{{\tan }^{2}}\left( \dfrac{x}{2} \right)}..........(1.2) \\
\end{align}$
Now, putting $\tan \left( x \right)=\dfrac{-4}{3}$ in equation 1.2, we get,
\[\begin{align}
& \tan \left( x \right)=\dfrac{2\tan \left( \dfrac{x}{2} \right)}{1-{{\tan }^{2}}\left( \dfrac{x}{2} \right)} \\
& \Rightarrow \dfrac{-4}{3}=\dfrac{2\tan \left( \dfrac{x}{2} \right)}{1-{{\tan }^{2}}\left( \dfrac{x}{2} \right)} \\
& \Rightarrow \dfrac{-4}{3}\left[ 1-{{\tan }^{2}}\left( \dfrac{x}{2} \right) \right]=2\tan \left( \dfrac{x}{2} \right) \\
& \Rightarrow \dfrac{-4}{3}+\dfrac{4}{3}{{\tan }^{2}}\left( \dfrac{x}{2} \right)-2\tan \left( \dfrac{x}{2} \right)=0 \\
& \Rightarrow \dfrac{4}{3}{{\tan }^{2}}\left( \dfrac{x}{2} \right)-2\tan \left( \dfrac{x}{2} \right)-\dfrac{4}{3}=0...........(1.3) \\
\end{align}\]
Multiplying both sides by 3 and then simplifying for $\tan \left( \dfrac{x}{2} \right)$ , we get,
$\begin{align}
& \left( \dfrac{4}{3}{{\tan }^{2}}\left( \dfrac{x}{2} \right)-2\tan \left( \dfrac{x}{2} \right)-\dfrac{4}{3} \right)\times 3=0\times 3 \\
& \Rightarrow 4{{\tan }^{2}}\left( \dfrac{x}{2} \right)-6\tan \left( \dfrac{x}{2} \right)-4=0 \\
& \Rightarrow \left( \tan \left( \dfrac{x}{2} \right)+\dfrac{1}{2} \right)\times \left( \tan \left( \dfrac{x}{2} \right)-2 \right)=0 \\
& \Rightarrow \tan \left( \dfrac{x}{2} \right)=-\dfrac{1}{2}\text{ or }2..........(1.4) \\
\end{align}$
As x is in the second quadrant, tan x should be negative as shown in the figure below. So, the value of \[tan\left( x \right)\] is $-\dfrac{1}{2}$ .
Now, we know that ${{\sec }^{2}}x=1+{{\tan }^{2}}x$ , so using this, we get,
${{\sec }^{2}}\left( \dfrac{x}{2} \right)=1+{{\tan }^{2}}\left( \dfrac{x}{2} \right)...........(1.5)$
Putting the value obtained in 1.4 in 1.5, and taking square roots of both the sides we get,
$\begin{align}
& {{\sec }^{2}}\left( \dfrac{x}{2} \right)=\dfrac{5}{4} \\
& \Rightarrow \text{sec}\left( \dfrac{x}{2} \right)=\pm \dfrac{\sqrt{5}}{2}............\text{(1}\text{.6)} \\
\end{align}$
As, x is in second quadrant, \[sec\left( x \right)\] is negative so \[sec\left( x \right)\] is equal to $-\dfrac{\sqrt{5}}{2}$
Now, \[\begin{align}
& \sec \left( \dfrac{x}{2} \right)=\dfrac{1}{\cos \left( \dfrac{x}{2} \right)} \\
& \Rightarrow \cos \left( \dfrac{x}{2} \right)=\dfrac{1}{\sec \left( \dfrac{x}{2} \right)} \\
\end{align}\]
So, we get the values of \[\cos \left( \dfrac{x}{2} \right)\] as \[-\dfrac{2}{\sqrt{5}}\] .
Now, \[\begin{align}
& \tan \left( \dfrac{x}{2} \right)=\dfrac{\sin \left( \dfrac{x}{2} \right)}{\cos \left( \dfrac{x}{2} \right)} \\
& \Rightarrow \sin \left( \dfrac{x}{2} \right)=\tan \left( \dfrac{x}{2} \right)\times \cos \left( \dfrac{x}{2} \right) \\
& \Rightarrow \sin \left( \dfrac{x}{2} \right)=\left( -\dfrac{1}{2} \right)\times \left( -\dfrac{2}{\sqrt{5}} \right) \\
& \Rightarrow \sin \left( \dfrac{x}{2} \right)=\dfrac{1}{\sqrt{5}}............(1.7) \\
\end{align}\]
Using equation 1.7, we get the value of $\sin \left( \dfrac{x}{2} \right)$ as $\dfrac{1}{\sqrt{5}}$ .
Hence, we have got all our answer as the values of$\sin \left( \dfrac{x}{2} \right)$ , $\cos \left( \dfrac{x}{2} \right)$ and $\tan \left( \dfrac{x}{2} \right)$ as $\dfrac{1}{\sqrt{5}}$, \[-\dfrac{2}{\sqrt{5}}\] and $-\dfrac{1}{2}$.
Note: We could also have found \[tan\left( x \right)\] by using $\tan (x)=\dfrac{1}{\cot (x)}$ and then \[sec\left( x \right)\] from \[tan\left( x \right)\]by using the identity ${{\sec }^{2}}\left( x \right)=1+{{\tan }^{2}}\left( x \right)$ and from there we could have found \[sin\left( x \right)\] and\[cos\left( x \right)\] . However, the answer would have remained the same as found out in the solution above.
Complete step-by-step solution -
In this given question, we are asked to find the value of $\sin \left( \dfrac{x}{2} \right)$ , $\cos \left( \dfrac{x}{2} \right)$ and $\tan \left( \dfrac{x}{2} \right)$ if
$\tan \left( x \right)=\dfrac{-4}{3}$ And x is in the second quadrant.
We know that the formula for finding the tangent of twice an angle is given by
$\tan \left( 2a \right)=\dfrac{2\tan a}{1-{{\tan }^{2}}a}................................(1.1)$
Now, x can be written as $2\times \dfrac{x}{2}$ .
So, putting $2\times \dfrac{x}{2}$ in place of a in equation 1.1, we get,
$\begin{align}
& \tan \left( 2\times \dfrac{x}{2} \right)=\dfrac{2\tan \left( \dfrac{x}{2} \right)}{1-{{\tan }^{2}}\left( \dfrac{x}{2} \right)} \\
& \Rightarrow \tan \left( x \right)=\dfrac{2\tan \left( \dfrac{x}{2} \right)}{1-{{\tan }^{2}}\left( \dfrac{x}{2} \right)}..........(1.2) \\
\end{align}$
Now, putting $\tan \left( x \right)=\dfrac{-4}{3}$ in equation 1.2, we get,
\[\begin{align}
& \tan \left( x \right)=\dfrac{2\tan \left( \dfrac{x}{2} \right)}{1-{{\tan }^{2}}\left( \dfrac{x}{2} \right)} \\
& \Rightarrow \dfrac{-4}{3}=\dfrac{2\tan \left( \dfrac{x}{2} \right)}{1-{{\tan }^{2}}\left( \dfrac{x}{2} \right)} \\
& \Rightarrow \dfrac{-4}{3}\left[ 1-{{\tan }^{2}}\left( \dfrac{x}{2} \right) \right]=2\tan \left( \dfrac{x}{2} \right) \\
& \Rightarrow \dfrac{-4}{3}+\dfrac{4}{3}{{\tan }^{2}}\left( \dfrac{x}{2} \right)-2\tan \left( \dfrac{x}{2} \right)=0 \\
& \Rightarrow \dfrac{4}{3}{{\tan }^{2}}\left( \dfrac{x}{2} \right)-2\tan \left( \dfrac{x}{2} \right)-\dfrac{4}{3}=0...........(1.3) \\
\end{align}\]
Multiplying both sides by 3 and then simplifying for $\tan \left( \dfrac{x}{2} \right)$ , we get,
$\begin{align}
& \left( \dfrac{4}{3}{{\tan }^{2}}\left( \dfrac{x}{2} \right)-2\tan \left( \dfrac{x}{2} \right)-\dfrac{4}{3} \right)\times 3=0\times 3 \\
& \Rightarrow 4{{\tan }^{2}}\left( \dfrac{x}{2} \right)-6\tan \left( \dfrac{x}{2} \right)-4=0 \\
& \Rightarrow \left( \tan \left( \dfrac{x}{2} \right)+\dfrac{1}{2} \right)\times \left( \tan \left( \dfrac{x}{2} \right)-2 \right)=0 \\
& \Rightarrow \tan \left( \dfrac{x}{2} \right)=-\dfrac{1}{2}\text{ or }2..........(1.4) \\
\end{align}$
As x is in the second quadrant, tan x should be negative as shown in the figure below. So, the value of \[tan\left( x \right)\] is $-\dfrac{1}{2}$ .
Now, we know that ${{\sec }^{2}}x=1+{{\tan }^{2}}x$ , so using this, we get,
${{\sec }^{2}}\left( \dfrac{x}{2} \right)=1+{{\tan }^{2}}\left( \dfrac{x}{2} \right)...........(1.5)$
Putting the value obtained in 1.4 in 1.5, and taking square roots of both the sides we get,
$\begin{align}
& {{\sec }^{2}}\left( \dfrac{x}{2} \right)=\dfrac{5}{4} \\
& \Rightarrow \text{sec}\left( \dfrac{x}{2} \right)=\pm \dfrac{\sqrt{5}}{2}............\text{(1}\text{.6)} \\
\end{align}$
As, x is in second quadrant, \[sec\left( x \right)\] is negative so \[sec\left( x \right)\] is equal to $-\dfrac{\sqrt{5}}{2}$
Now, \[\begin{align}
& \sec \left( \dfrac{x}{2} \right)=\dfrac{1}{\cos \left( \dfrac{x}{2} \right)} \\
& \Rightarrow \cos \left( \dfrac{x}{2} \right)=\dfrac{1}{\sec \left( \dfrac{x}{2} \right)} \\
\end{align}\]
So, we get the values of \[\cos \left( \dfrac{x}{2} \right)\] as \[-\dfrac{2}{\sqrt{5}}\] .
Now, \[\begin{align}
& \tan \left( \dfrac{x}{2} \right)=\dfrac{\sin \left( \dfrac{x}{2} \right)}{\cos \left( \dfrac{x}{2} \right)} \\
& \Rightarrow \sin \left( \dfrac{x}{2} \right)=\tan \left( \dfrac{x}{2} \right)\times \cos \left( \dfrac{x}{2} \right) \\
& \Rightarrow \sin \left( \dfrac{x}{2} \right)=\left( -\dfrac{1}{2} \right)\times \left( -\dfrac{2}{\sqrt{5}} \right) \\
& \Rightarrow \sin \left( \dfrac{x}{2} \right)=\dfrac{1}{\sqrt{5}}............(1.7) \\
\end{align}\]
Using equation 1.7, we get the value of $\sin \left( \dfrac{x}{2} \right)$ as $\dfrac{1}{\sqrt{5}}$ .
Hence, we have got all our answer as the values of$\sin \left( \dfrac{x}{2} \right)$ , $\cos \left( \dfrac{x}{2} \right)$ and $\tan \left( \dfrac{x}{2} \right)$ as $\dfrac{1}{\sqrt{5}}$, \[-\dfrac{2}{\sqrt{5}}\] and $-\dfrac{1}{2}$.
Note: We could also have found \[tan\left( x \right)\] by using $\tan (x)=\dfrac{1}{\cot (x)}$ and then \[sec\left( x \right)\] from \[tan\left( x \right)\]by using the identity ${{\sec }^{2}}\left( x \right)=1+{{\tan }^{2}}\left( x \right)$ and from there we could have found \[sin\left( x \right)\] and\[cos\left( x \right)\] . However, the answer would have remained the same as found out in the solution above.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

