
Find the value of $\sin {37^o},\sin {53^o},\tan {37^o},\tan {53^o}$ in terms of fraction.
Answer
466.2k+ views
Hint: In this question, we have to write the given trigonometric function in terms of fraction.
We know, that in a right- angled triangle, there are three sides, perpendicular, base and the hypotenuse.
And, $\sin \theta = \dfrac{P}{H}$ , where, $P$ is the length of perpendicular and $H$ is referred to as the length of hypotenuse, whereas, $\tan \theta = \dfrac{P}{B}$ , where, $P$ is the length of perpendicular and $B$ is the length of base of the triangle.
Complete answer:
Given trigonometric functions $\sin {37^o},\sin {53^o},\tan {37^o},\tan {53^o}$ .
To write these trigonometric functions in terms of fraction.
Consider a right- angled triangle, $\vartriangle ABC$ , with $\angle ACB = {37^o}$ and $\angle ABC = {90^o}$ .
Then, we have, using angle sum property of a triangle, that, $\angle ABC + \angle BAC + \angle ACB = {180^o}$ , i.e., ${37^o} + {90^o} + \angle BAC = {180^o}$ . On solving, we get, $\angle BAC = {180^o} - {127^o}$ i.e., $\angle BAC = {53^o}$ .
Now, let length of side $AB$ is $3units$ and length of side $BC$ is $4units$ , then, by Pythagoras theorem, we have, $A{B^2} + B{C^2} = A{C^2}$ , putting values, we get, ${3^2} + {4^2} = 9 + 16 = 25$ , hence, $AC = 5units$ .
Now, we know, $\sin \theta = \dfrac{P}{H}$ , and for angle $\theta = {37^o}$ , $P = 3$ and $H = 5$ . So, $\sin {37^o} = \dfrac{3}{5}$ .
Similarly, for angle $\theta = {53^o}$ , $P = 4$ and $H = 5$ . So, $\sin {53^o} = \dfrac{4}{5}$ .
Now, for angle $\theta = {37^o}$ , $P = 3$ and $B = 4$ . So, $\tan {37^o} = \dfrac{3}{4}$ .
Similarly, for angle $\theta = {53^o}$ , $P = 4$ and $B = 3$ . So, \[\tan {53^o} = \dfrac{4}{3}\]
Note:
It is not necessary to choose the lengths of sides of the triangle to be $3units$ or $4units$ . We can choose the length of sides of the right- angled triangle by our choices.
If ${x^2} = {a^2}$ , then, taking square root on both sides, we get, $x = \pm a$ , but in this question, we are talking about length of sides and length can never be negative. Hence, we have taken only the positive one.
For any angle, say $\theta $ , the sides opposite to this angle will be the perpendicular side, whereas, the third side except for the hypotenuse, will be the base of the triangle.
We know, that in a right- angled triangle, there are three sides, perpendicular, base and the hypotenuse.
And, $\sin \theta = \dfrac{P}{H}$ , where, $P$ is the length of perpendicular and $H$ is referred to as the length of hypotenuse, whereas, $\tan \theta = \dfrac{P}{B}$ , where, $P$ is the length of perpendicular and $B$ is the length of base of the triangle.
Complete answer:
Given trigonometric functions $\sin {37^o},\sin {53^o},\tan {37^o},\tan {53^o}$ .
To write these trigonometric functions in terms of fraction.
Consider a right- angled triangle, $\vartriangle ABC$ , with $\angle ACB = {37^o}$ and $\angle ABC = {90^o}$ .
Then, we have, using angle sum property of a triangle, that, $\angle ABC + \angle BAC + \angle ACB = {180^o}$ , i.e., ${37^o} + {90^o} + \angle BAC = {180^o}$ . On solving, we get, $\angle BAC = {180^o} - {127^o}$ i.e., $\angle BAC = {53^o}$ .
Now, let length of side $AB$ is $3units$ and length of side $BC$ is $4units$ , then, by Pythagoras theorem, we have, $A{B^2} + B{C^2} = A{C^2}$ , putting values, we get, ${3^2} + {4^2} = 9 + 16 = 25$ , hence, $AC = 5units$ .
Now, we know, $\sin \theta = \dfrac{P}{H}$ , and for angle $\theta = {37^o}$ , $P = 3$ and $H = 5$ . So, $\sin {37^o} = \dfrac{3}{5}$ .
Similarly, for angle $\theta = {53^o}$ , $P = 4$ and $H = 5$ . So, $\sin {53^o} = \dfrac{4}{5}$ .
Now, for angle $\theta = {37^o}$ , $P = 3$ and $B = 4$ . So, $\tan {37^o} = \dfrac{3}{4}$ .
Similarly, for angle $\theta = {53^o}$ , $P = 4$ and $B = 3$ . So, \[\tan {53^o} = \dfrac{4}{3}\]
Note:
It is not necessary to choose the lengths of sides of the triangle to be $3units$ or $4units$ . We can choose the length of sides of the right- angled triangle by our choices.
If ${x^2} = {a^2}$ , then, taking square root on both sides, we get, $x = \pm a$ , but in this question, we are talking about length of sides and length can never be negative. Hence, we have taken only the positive one.
For any angle, say $\theta $ , the sides opposite to this angle will be the perpendicular side, whereas, the third side except for the hypotenuse, will be the base of the triangle.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

