
Find the value of \[\sin {{135}^{\circ }}\cos {{210}^{\circ }}\tan {{240}^{\circ }}\cot {{300}^{\circ }}\sec {{330}^{\circ }}\].
Answer
606k+ views
Hint: We can solve this with the help of quadrants. Take each value and find which quadrant it belongs to and simplify it. When all the simplified values are found use the trigonometric tables to get the value of the functions.
Complete step-by-step answer:
Let us use the ASTC rules to determine the sign of the ratio and quadrant expressions. Let us consider the original angle given as \[\theta \]and the auxiliary value as \[\alpha \], this can be generated according to the quadrant taken.
For quadrant II, we can write that, \[\theta =180-\alpha \].
For quadrant III, we can write that, \[\theta =180+\alpha \], and for quadrant IV, we can write that, \[\theta =360-\alpha \].
Now let us consider our \[{{1}^{st}}\]value of \[\sin {{135}^{\circ }}\]. \[{{135}^{\circ }}\]is in quadrant II.
So, \[\sin {{135}^{\circ }}=\sin \left( 180-\alpha \right)\],
i.e. \[\sin {{135}^{\circ }}=\sin \left( 180-{{45}^{\circ }} \right)\].
In quadrant II, sine is positive. Hence, \[\sin {{135}^{\circ }}=\sin \left( 180-{{45}^{\circ }} \right)=\sin {{45}^{\circ }}\].
Similarly, \[\cos {{210}^{\circ }}\]is in \[{{3}^{rd}}\]quadrant and cosine is negative in \[{{3}^{rd}}\]quadrant.
\[\cos {{210}^{\circ }}=\cos \left( 180+\alpha \right)=\cos \left( 180+{{30}^{\circ }} \right)\].
\[\therefore \cos {{210}^{\circ }}=\cos \left( 180+{{30}^{\circ }} \right)=-\cos {{30}^{\circ }}\] [As cosine is in \[{{3}^{rd}}\]quadrant, its negative]
Similarly, \[\tan {{240}^{\circ }}\]is in the \[{{3}^{rd}}\]quadrant, it is positive.
\[\tan {{240}^{\circ }}=\tan \left( 180+\alpha \right)=\tan \left( 180+60 \right)=\tan {{60}^{\circ }}\]
Now \[\cot {{300}^{\circ }}\]lies in the \[{{4}^{th}}\]quadrant, where it is negative.
\[\cot {{300}^{\circ }}=\cot \left( 360-\alpha \right)=\cot \left( 360-60 \right)=-\cot {{60}^{\circ }}\].
Similarly, \[\sec {{330}^{\circ }}\]lies in \[{{4}^{th}}\]quadrant, and it is positive.
\[\sec {{330}^{\circ }}=\sec \left( 360-\alpha \right)=\sec \left( 360-30 \right)=\sec {{30}^{\circ }}\]
Hence we can write,
\[\begin{align}
& \sin {{135}^{\circ }}\cos {{210}^{\circ }}\tan {{240}^{\circ }}\cot {{300}^{\circ }}\sec {{330}^{\circ }} \\
& =\sin {{45}^{\circ }}\left( -\cos {{30}^{\circ }} \right)\tan {{60}^{\circ }}\left( -\cot {{60}^{\circ }} \right)\sec {{30}^{\circ }} \\
& =\sin {{45}^{\circ }}\cos {{30}^{\circ }}\tan {{60}^{\circ }}\cot {{60}^{\circ }}\sec {{30}^{\circ }} \\
\end{align}\]
From the trigonometric table we can find out the values.
From this table we can say that,
\[\sin {{45}^{\circ }}=\dfrac{1}{\sqrt{2}}\]
\[\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}\]
\[\tan {{60}^{\circ }}=\sqrt{3}\]
\[\cot {{60}^{\circ }}=\dfrac{1}{\sqrt{3}}\]
\[\sec {{30}^{\circ }}=\dfrac{2}{\sqrt{3}}\]
\[\begin{align}
& \Rightarrow \sin {{45}^{\circ }}\cos {{30}^{\circ }}\tan {{60}^{\circ }}\cot {{60}^{\circ }}\sec {{30}^{\circ }} \\
& =\dfrac{1}{\sqrt{2}}\times \dfrac{\sqrt{3}}{2}\times \sqrt{3}\times \dfrac{1}{\sqrt{3}}\times \dfrac{2}{\sqrt{3}} \\
\end{align}\]
Cancel out like terms and simplify them, we get the final answer as,
\[\sin {{45}^{\circ }}\cos {{30}^{\circ }}\tan {{60}^{\circ }}\cot {{60}^{\circ }}\sec {{30}^{\circ }}=\dfrac{1}{\sqrt{2}}\].
Hence, we got \[\sin {{45}^{\circ }}\cos {{30}^{\circ }}\tan {{60}^{\circ }}\cot {{60}^{\circ }}\sec {{30}^{\circ }}=\dfrac{1}{\sqrt{2}}\].
Note: Remember the basics of quadrants that,
In quadrant 2: \[\sin \theta \ And \csc \theta \] are positive.
In quadrant 3: \[\tan \theta \ And \cot \theta \] are positive.
In quadrant 4: \[\cos \theta \ And \sec \theta \] are positive.
In quadrant 1: all are positive.
Complete step-by-step answer:
Let us use the ASTC rules to determine the sign of the ratio and quadrant expressions. Let us consider the original angle given as \[\theta \]and the auxiliary value as \[\alpha \], this can be generated according to the quadrant taken.
For quadrant II, we can write that, \[\theta =180-\alpha \].
For quadrant III, we can write that, \[\theta =180+\alpha \], and for quadrant IV, we can write that, \[\theta =360-\alpha \].
Now let us consider our \[{{1}^{st}}\]value of \[\sin {{135}^{\circ }}\]. \[{{135}^{\circ }}\]is in quadrant II.
So, \[\sin {{135}^{\circ }}=\sin \left( 180-\alpha \right)\],
i.e. \[\sin {{135}^{\circ }}=\sin \left( 180-{{45}^{\circ }} \right)\].
In quadrant II, sine is positive. Hence, \[\sin {{135}^{\circ }}=\sin \left( 180-{{45}^{\circ }} \right)=\sin {{45}^{\circ }}\].
Similarly, \[\cos {{210}^{\circ }}\]is in \[{{3}^{rd}}\]quadrant and cosine is negative in \[{{3}^{rd}}\]quadrant.
\[\cos {{210}^{\circ }}=\cos \left( 180+\alpha \right)=\cos \left( 180+{{30}^{\circ }} \right)\].
\[\therefore \cos {{210}^{\circ }}=\cos \left( 180+{{30}^{\circ }} \right)=-\cos {{30}^{\circ }}\] [As cosine is in \[{{3}^{rd}}\]quadrant, its negative]
Similarly, \[\tan {{240}^{\circ }}\]is in the \[{{3}^{rd}}\]quadrant, it is positive.
\[\tan {{240}^{\circ }}=\tan \left( 180+\alpha \right)=\tan \left( 180+60 \right)=\tan {{60}^{\circ }}\]
Now \[\cot {{300}^{\circ }}\]lies in the \[{{4}^{th}}\]quadrant, where it is negative.
\[\cot {{300}^{\circ }}=\cot \left( 360-\alpha \right)=\cot \left( 360-60 \right)=-\cot {{60}^{\circ }}\].
Similarly, \[\sec {{330}^{\circ }}\]lies in \[{{4}^{th}}\]quadrant, and it is positive.
\[\sec {{330}^{\circ }}=\sec \left( 360-\alpha \right)=\sec \left( 360-30 \right)=\sec {{30}^{\circ }}\]
Hence we can write,
\[\begin{align}
& \sin {{135}^{\circ }}\cos {{210}^{\circ }}\tan {{240}^{\circ }}\cot {{300}^{\circ }}\sec {{330}^{\circ }} \\
& =\sin {{45}^{\circ }}\left( -\cos {{30}^{\circ }} \right)\tan {{60}^{\circ }}\left( -\cot {{60}^{\circ }} \right)\sec {{30}^{\circ }} \\
& =\sin {{45}^{\circ }}\cos {{30}^{\circ }}\tan {{60}^{\circ }}\cot {{60}^{\circ }}\sec {{30}^{\circ }} \\
\end{align}\]
From the trigonometric table we can find out the values.
| \[{{0}^{\circ }}\] | \[{{30}^{\circ }}\] | \[{{45}^{\circ }}\] | \[{{60}^{\circ }}\] | \[{{90}^{\circ }}\] | |
| sin | 0 | \[\dfrac{1}{2}\] | \[\dfrac{1}{\sqrt{2}}\] | \[\dfrac{\sqrt{3}}{2}\] | 1 |
| cos | 1 | \[\dfrac{\sqrt{3}}{2}\] | \[\dfrac{1}{\sqrt{2}}\] | \[\dfrac{1}{2}\] | 0 |
| tan | 0 | \[\dfrac{1}{\sqrt{3}}\] | 1 | \[\sqrt{3}\] | N.A |
| cosec | N.A | 2 | \[\sqrt{2}\] | \[\dfrac{2}{\sqrt{3}}\] | 1 |
| sec | 1 | \[\dfrac{2}{\sqrt{3}}\] | \[\sqrt{2}\] | 2 | N.A |
| cot | N.A | \[\sqrt{3}\] | 1 | \[\dfrac{1}{\sqrt{3}}\] | 0 |
From this table we can say that,
\[\sin {{45}^{\circ }}=\dfrac{1}{\sqrt{2}}\]
\[\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}\]
\[\tan {{60}^{\circ }}=\sqrt{3}\]
\[\cot {{60}^{\circ }}=\dfrac{1}{\sqrt{3}}\]
\[\sec {{30}^{\circ }}=\dfrac{2}{\sqrt{3}}\]
\[\begin{align}
& \Rightarrow \sin {{45}^{\circ }}\cos {{30}^{\circ }}\tan {{60}^{\circ }}\cot {{60}^{\circ }}\sec {{30}^{\circ }} \\
& =\dfrac{1}{\sqrt{2}}\times \dfrac{\sqrt{3}}{2}\times \sqrt{3}\times \dfrac{1}{\sqrt{3}}\times \dfrac{2}{\sqrt{3}} \\
\end{align}\]
Cancel out like terms and simplify them, we get the final answer as,
\[\sin {{45}^{\circ }}\cos {{30}^{\circ }}\tan {{60}^{\circ }}\cot {{60}^{\circ }}\sec {{30}^{\circ }}=\dfrac{1}{\sqrt{2}}\].
Hence, we got \[\sin {{45}^{\circ }}\cos {{30}^{\circ }}\tan {{60}^{\circ }}\cot {{60}^{\circ }}\sec {{30}^{\circ }}=\dfrac{1}{\sqrt{2}}\].
Note: Remember the basics of quadrants that,
In quadrant 2: \[\sin \theta \ And \csc \theta \] are positive.
In quadrant 3: \[\tan \theta \ And \cot \theta \] are positive.
In quadrant 4: \[\cos \theta \ And \sec \theta \] are positive.
In quadrant 1: all are positive.
Recently Updated Pages
What happens to glucose which enters nephron along class 10 biology CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

When the JanmiKudian Act was passed that granted the class 10 social science CBSE

A sector containing an angle of 120 circ is cut off class 10 maths CBSE

The sum of digits of a two digit number is 13 If t-class-10-maths-ICSE

Trending doubts
The shortest day of the year in India

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

What is the missing number in the sequence 259142027 class 10 maths CBSE

10 examples of evaporation in daily life with explanations

State and prove the Pythagoras theorem-class-10-maths-CBSE

