
Find the value of: \[\sin {{120}^{\circ }}\cos {{150}^{\circ }}+\cos {{240}^{\circ }}\sin {{330}^{\circ }}=?\]
Answer
602.1k+ views
Hint: We can solve this using quadrants, take each value and find which quadrant it belongs to and simplify it. When all the simplified values are found, use the trigonometric table to get the value of the function.
Complete step-by-step answer:
Let us use the ASTC rules to determine the sign of the ratio and quadrant expressions. Let us consider the original angle given as \[\theta \] and the auxiliary value as \[\alpha \], this can be generated according to the quadrant taken.
For quadrant II, we can write that, \[\theta =180-\alpha \].
For quadrant III, we can write that, \[\theta =180+\alpha \].
For quadrant IV, we can write that, \[\theta =360-\alpha \].
Now let us take our \[{{1}^{st}}\] value, \[\sin {{120}^{\circ }}\].
\[{{120}^{\circ }}\] lies in the II quadrant.
\[\therefore \sin {{120}^{\circ }}=\sin \left( 180-\alpha \right)=\sin \left( 180-{{60}^{\circ }} \right)\]
In quadrant II, sine is positive hence,
\[\therefore \sin {{120}^{\circ }}=\sin \left( 180-\alpha \right)=\sin \left( 180-{{60}^{\circ }} \right)=\sin {{60}^{\circ }}\]
Now let us consider out \[{{2}^{nd}}\] value, \[\cos {{150}^{\circ }}\].
It lies in quadrant II and the value of cosine is negative in II quadrant.
\[\cos {{150}^{\circ }}=\cos \left( 180-\alpha \right)\]
\[\begin{align}
& =\cos \left( 180-30 \right) \\
& =-\cos {{30}^{\circ }} \\
\end{align}\]
\[\therefore \cos {{150}^{\circ }}=-\cos {{30}^{\circ }}\]
Now let us consider \[\cos {{240}^{\circ }}\]. \[{{240}^{\circ }}\] lies in the \[{{3}^{rd}}\] quadrant. Cosine function is negative in the \[{{3}^{rd}}\] quadrant.
\[\therefore \cos {{240}^{\circ }}=\cos \left( 180+\alpha \right)\]
\[\begin{align}
& =-\cos \left( 180+{{60}^{\circ }} \right) \\
& =-\cos {{60}^{\circ }} \\
\end{align}\]
\[\therefore \cos {{240}^{\circ }}=-\cos {{60}^{\circ }}\]
Similarly, \[\sin {{330}^{\circ }}\], \[{{330}^{\circ }}\] lies in the \[{{4}^{th}}\] quadrant. Sine function is negative in the \[{{4}^{th}}\] quadrant.
\[\sin {{330}^{\circ }}=\sin \left( 360-\alpha \right)\]
\[\begin{align}
& =-\sin \left( 360-{{30}^{\circ }} \right) \\
& =-\sin {{30}^{\circ }} \\
\end{align}\]
\[\therefore \sin {{330}^{\circ }}=-\sin {{30}^{\circ }}\]
Hence, we can write that,
\[\begin{align}
& \sin {{120}^{\circ }}\cos {{150}^{\circ }}+\cos {{240}^{\circ }}\sin {{330}^{\circ }} \\
& =\sin {{60}^{\circ }}\times \left( -\cos {{30}^{\circ }} \right)+\left( -\cos {{60}^{\circ }} \right)\times \left( -\sin {{30}^{\circ }} \right) \\
& =-\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\cos {{60}^{\circ }}\sin {{30}^{\circ }} \\
\end{align}\]
From the trigonometric table, we can find the values as,
From the table we can say that,
\[\begin{align}
& \sin 60=\dfrac{\sqrt{3}}{2} \\
& \cos 30=\dfrac{\sqrt{3}}{2} \\
& \cos 60=\dfrac{1}{2} \\
& \sin 30=\dfrac{1}{2} \\
\end{align}\]
\[\begin{align}
& \therefore -\sin {{60}^{\circ }}\times \cos {{30}^{\circ }}+\cos {{60}^{\circ }}\sin {{30}^{\circ }} \\
& =-\left( \dfrac{\sqrt{3}}{2}\times \dfrac{\sqrt{3}}{2} \right)+\left( \dfrac{1}{2}\times \dfrac{1}{2} \right) \\
& =-\dfrac{3}{4}+\dfrac{1}{4}=\dfrac{-3+1}{4}=\dfrac{-2}{4} \\
& =\dfrac{-1}{2} \\
\end{align}\]
Thus we got, \[\sin {{120}^{\circ }}\cos {{150}^{\circ }}+\cos {{240}^{\circ }}\sin {{330}^{\circ }}=\dfrac{-1}{2}\].
\[\therefore \] We got the required value.
Note: Remember the basics of quadrant that,
In Quadrant I: All functions are positive.
In Quadrant II: \[\sin \theta \] and \[\csc \theta \] are positive.
In Quadrant III: \[\tan \theta \] and \[\cot \theta \] are positive.
In quadrant IV: \[\cos \theta \] and \[\sec \theta \] are positive.
Complete step-by-step answer:
Let us use the ASTC rules to determine the sign of the ratio and quadrant expressions. Let us consider the original angle given as \[\theta \] and the auxiliary value as \[\alpha \], this can be generated according to the quadrant taken.
For quadrant II, we can write that, \[\theta =180-\alpha \].
For quadrant III, we can write that, \[\theta =180+\alpha \].
For quadrant IV, we can write that, \[\theta =360-\alpha \].
Now let us take our \[{{1}^{st}}\] value, \[\sin {{120}^{\circ }}\].
\[{{120}^{\circ }}\] lies in the II quadrant.
\[\therefore \sin {{120}^{\circ }}=\sin \left( 180-\alpha \right)=\sin \left( 180-{{60}^{\circ }} \right)\]
In quadrant II, sine is positive hence,
\[\therefore \sin {{120}^{\circ }}=\sin \left( 180-\alpha \right)=\sin \left( 180-{{60}^{\circ }} \right)=\sin {{60}^{\circ }}\]
Now let us consider out \[{{2}^{nd}}\] value, \[\cos {{150}^{\circ }}\].
It lies in quadrant II and the value of cosine is negative in II quadrant.
\[\cos {{150}^{\circ }}=\cos \left( 180-\alpha \right)\]
\[\begin{align}
& =\cos \left( 180-30 \right) \\
& =-\cos {{30}^{\circ }} \\
\end{align}\]
\[\therefore \cos {{150}^{\circ }}=-\cos {{30}^{\circ }}\]
Now let us consider \[\cos {{240}^{\circ }}\]. \[{{240}^{\circ }}\] lies in the \[{{3}^{rd}}\] quadrant. Cosine function is negative in the \[{{3}^{rd}}\] quadrant.
\[\therefore \cos {{240}^{\circ }}=\cos \left( 180+\alpha \right)\]
\[\begin{align}
& =-\cos \left( 180+{{60}^{\circ }} \right) \\
& =-\cos {{60}^{\circ }} \\
\end{align}\]
\[\therefore \cos {{240}^{\circ }}=-\cos {{60}^{\circ }}\]
Similarly, \[\sin {{330}^{\circ }}\], \[{{330}^{\circ }}\] lies in the \[{{4}^{th}}\] quadrant. Sine function is negative in the \[{{4}^{th}}\] quadrant.
\[\sin {{330}^{\circ }}=\sin \left( 360-\alpha \right)\]
\[\begin{align}
& =-\sin \left( 360-{{30}^{\circ }} \right) \\
& =-\sin {{30}^{\circ }} \\
\end{align}\]
\[\therefore \sin {{330}^{\circ }}=-\sin {{30}^{\circ }}\]
Hence, we can write that,
\[\begin{align}
& \sin {{120}^{\circ }}\cos {{150}^{\circ }}+\cos {{240}^{\circ }}\sin {{330}^{\circ }} \\
& =\sin {{60}^{\circ }}\times \left( -\cos {{30}^{\circ }} \right)+\left( -\cos {{60}^{\circ }} \right)\times \left( -\sin {{30}^{\circ }} \right) \\
& =-\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\cos {{60}^{\circ }}\sin {{30}^{\circ }} \\
\end{align}\]
From the trigonometric table, we can find the values as,
| \[\theta \] | \[{{0}^{\circ }}\] | \[{{30}^{\circ }}\] | \[{{45}^{\circ }}\] | \[{{60}^{\circ }}\] | \[{{90}^{\circ }}\] |
| sin | 0 | \[\dfrac{1}{2}\] | \[\dfrac{1}{\sqrt{2}}\] | \[\dfrac{\sqrt{3}}{2}\] | 1 |
| cos | 1 | \[\dfrac{\sqrt{3}}{2}\] | \[\dfrac{1}{\sqrt{2}}\] | \[\dfrac{1}{2}\] | 0 |
| tan | 0 | \[\dfrac{1}{\sqrt{3}}\] | 1 | \[\sqrt{3}\] | N.A |
| cosec | N.A | 2 | \[\sqrt{2}\] | \[\dfrac{2}{\sqrt{3}}\] | 1 |
| sec | 1 | \[\dfrac{2}{\sqrt{3}}\] | \[\sqrt{2}\] | 2 | N.A |
| cot | N.A | \[\sqrt{3}\] | 1 | \[\dfrac{1}{\sqrt{3}}\] | 0 |
From the table we can say that,
\[\begin{align}
& \sin 60=\dfrac{\sqrt{3}}{2} \\
& \cos 30=\dfrac{\sqrt{3}}{2} \\
& \cos 60=\dfrac{1}{2} \\
& \sin 30=\dfrac{1}{2} \\
\end{align}\]
\[\begin{align}
& \therefore -\sin {{60}^{\circ }}\times \cos {{30}^{\circ }}+\cos {{60}^{\circ }}\sin {{30}^{\circ }} \\
& =-\left( \dfrac{\sqrt{3}}{2}\times \dfrac{\sqrt{3}}{2} \right)+\left( \dfrac{1}{2}\times \dfrac{1}{2} \right) \\
& =-\dfrac{3}{4}+\dfrac{1}{4}=\dfrac{-3+1}{4}=\dfrac{-2}{4} \\
& =\dfrac{-1}{2} \\
\end{align}\]
Thus we got, \[\sin {{120}^{\circ }}\cos {{150}^{\circ }}+\cos {{240}^{\circ }}\sin {{330}^{\circ }}=\dfrac{-1}{2}\].
\[\therefore \] We got the required value.
Note: Remember the basics of quadrant that,
In Quadrant I: All functions are positive.
In Quadrant II: \[\sin \theta \] and \[\csc \theta \] are positive.
In Quadrant III: \[\tan \theta \] and \[\cot \theta \] are positive.
In quadrant IV: \[\cos \theta \] and \[\sec \theta \] are positive.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

