
Find the value of other five trigonometric ratios:
$\cot x = \dfrac{3}{4}$ , x lies in the third quadrant.
Answer
577.5k+ views
Hint: Given that x lies in third quadrant. Now if x lies in the third quadrant, only \[\tan x\] and \[\cot x\] is positive.
Also, note the following important formulae:
$\cos x = \dfrac{1}{{\sec x}}$ , $\sin x = \dfrac{1}{{\cos ecx}}$ , $\tan x = \dfrac{1}{{\cot x}}$
${\sin ^2}x + {\cos ^2}x = 1$
\[{\sec ^2}x - {\tan ^2}x = 1\]
\[{\operatorname{cosec} ^2}x - {\cot ^2}x = 1\]
Now, the value of \[\cot x\] is given. Therefore find the value of the other five trigonometric ratios with the help of before mentioned formulae.
Complete step-by-step answer:
Given, $\cot x = \dfrac{3}{4}$
Therefore $\tan x = \dfrac{1}{{\cot x}} = \dfrac{4}{3}$
\[\because {\sec ^2}x - {\tan ^2}x = 1\], we get,
\[ \Rightarrow {\sec ^2}x = 1 + {\tan ^2}x\]
On taking square root we get,
\[ \Rightarrow \sec x = \pm \sqrt {1 + {{\tan }^2}x} \]
On substituting the value of \[\tan x\]we get,
\[ \Rightarrow \sec x = \pm \sqrt {1 + {{\left( {\dfrac{4}{3}} \right)}^2}} \]
On simplification we get,
\[ \Rightarrow \sec x = - \dfrac{5}{3}\]
Here as, x lies in the third Quadrant, therefore \[\sec x\] is negative.
Therefore $\cos x = \dfrac{1}{{\sec x}} = - \dfrac{3}{5}$
Again,
${\sin ^2}x + {\cos ^2}x = 1$
$ \Rightarrow {\sin ^2}x = 1 - {\cos ^2}x$
On taking square root we get,
$ \Rightarrow \sin x = \pm \sqrt {1 - {{\cos }^2}x} $
On substituting the value of \[\cos x\]we get,
$ \Rightarrow \sin x = \pm \sqrt {1 - {{\left( { - \dfrac{3}{5}} \right)}^2}} $
On solving we get,
$ \Rightarrow \sin x = \pm \sqrt {1 - \dfrac{9}{{25}}} = \pm \sqrt {\dfrac{{16}}{{25}}} $
On simplification we get,
$ \Rightarrow \sin x = - \dfrac{4}{5}$
Here as, x lies in the third quadrant so the value of\[\;\sin x\] will be negative.
Therefore, $\operatorname{cosecx} = \dfrac{1}{{\sin x}} = - \dfrac{5}{4}$
Hence when $\cot x = \dfrac{3}{4}$ , and x lies in third quadrant, the other five trigonometric ratios are :
\[\tan x = \dfrac{4}{3}\], $\sin x = - \dfrac{4}{5}$ , $\cos x = - \dfrac{3}{5}$, \[\sec x = - \dfrac{5}{3}\] and $\operatorname{cosecx} = - \dfrac{5}{4}$
Note: Note the following important formulae:
1.$\cos x = \dfrac{1}{{\sec x}}$ , $\sin x = \dfrac{1}{{\cos ecx}}$ , $\tan x = \dfrac{1}{{\cot x}}$
2.${\sin ^2}x + {\cos ^2}x = 1$
3.\[{\sec ^2}x - {\tan ^2}x = 1\]
4.\[{\operatorname{cosec} ^2}x - {\cot ^2}x = 1\]
5.$\sin ( - x) = - \sin x$
6.$\cos ( - x) = \cos x$
7.$\tan ( - x) = - \tan x$
8.$\sin \left( {2n\pi \pm x} \right) = \sin x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
9.$\cos \left( {2n\pi \pm x} \right) = \cos x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
10.$\tan \left( {n\pi \pm x} \right) = \tan x{\text{ , period }}\pi {\text{ or 18}}{0^ \circ }$
Sign convention:
Also, note the following important formulae:
$\cos x = \dfrac{1}{{\sec x}}$ , $\sin x = \dfrac{1}{{\cos ecx}}$ , $\tan x = \dfrac{1}{{\cot x}}$
${\sin ^2}x + {\cos ^2}x = 1$
\[{\sec ^2}x - {\tan ^2}x = 1\]
\[{\operatorname{cosec} ^2}x - {\cot ^2}x = 1\]
Now, the value of \[\cot x\] is given. Therefore find the value of the other five trigonometric ratios with the help of before mentioned formulae.
Complete step-by-step answer:
Given, $\cot x = \dfrac{3}{4}$
Therefore $\tan x = \dfrac{1}{{\cot x}} = \dfrac{4}{3}$
\[\because {\sec ^2}x - {\tan ^2}x = 1\], we get,
\[ \Rightarrow {\sec ^2}x = 1 + {\tan ^2}x\]
On taking square root we get,
\[ \Rightarrow \sec x = \pm \sqrt {1 + {{\tan }^2}x} \]
On substituting the value of \[\tan x\]we get,
\[ \Rightarrow \sec x = \pm \sqrt {1 + {{\left( {\dfrac{4}{3}} \right)}^2}} \]
On simplification we get,
\[ \Rightarrow \sec x = - \dfrac{5}{3}\]
Here as, x lies in the third Quadrant, therefore \[\sec x\] is negative.
Therefore $\cos x = \dfrac{1}{{\sec x}} = - \dfrac{3}{5}$
Again,
${\sin ^2}x + {\cos ^2}x = 1$
$ \Rightarrow {\sin ^2}x = 1 - {\cos ^2}x$
On taking square root we get,
$ \Rightarrow \sin x = \pm \sqrt {1 - {{\cos }^2}x} $
On substituting the value of \[\cos x\]we get,
$ \Rightarrow \sin x = \pm \sqrt {1 - {{\left( { - \dfrac{3}{5}} \right)}^2}} $
On solving we get,
$ \Rightarrow \sin x = \pm \sqrt {1 - \dfrac{9}{{25}}} = \pm \sqrt {\dfrac{{16}}{{25}}} $
On simplification we get,
$ \Rightarrow \sin x = - \dfrac{4}{5}$
Here as, x lies in the third quadrant so the value of\[\;\sin x\] will be negative.
Therefore, $\operatorname{cosecx} = \dfrac{1}{{\sin x}} = - \dfrac{5}{4}$
Hence when $\cot x = \dfrac{3}{4}$ , and x lies in third quadrant, the other five trigonometric ratios are :
\[\tan x = \dfrac{4}{3}\], $\sin x = - \dfrac{4}{5}$ , $\cos x = - \dfrac{3}{5}$, \[\sec x = - \dfrac{5}{3}\] and $\operatorname{cosecx} = - \dfrac{5}{4}$
Note: Note the following important formulae:
1.$\cos x = \dfrac{1}{{\sec x}}$ , $\sin x = \dfrac{1}{{\cos ecx}}$ , $\tan x = \dfrac{1}{{\cot x}}$
2.${\sin ^2}x + {\cos ^2}x = 1$
3.\[{\sec ^2}x - {\tan ^2}x = 1\]
4.\[{\operatorname{cosec} ^2}x - {\cot ^2}x = 1\]
5.$\sin ( - x) = - \sin x$
6.$\cos ( - x) = \cos x$
7.$\tan ( - x) = - \tan x$
8.$\sin \left( {2n\pi \pm x} \right) = \sin x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
9.$\cos \left( {2n\pi \pm x} \right) = \cos x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
10.$\tan \left( {n\pi \pm x} \right) = \tan x{\text{ , period }}\pi {\text{ or 18}}{0^ \circ }$
Sign convention:
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

