Answer
Verified
412.2k+ views
Hint: Here, we have to find the value of \[\mathop {\lim }\limits_{x \to 1} \dfrac{{1 - {x^{\dfrac{{ - 1}}{3}}}}}{{1 - {x^{\dfrac{{ - 2}}{3}}}}}\]. If we take the limit $x \to 1$ we get $\dfrac{0}{0}$ which is an indeterminate form, so its limit can be calculated by the “L’HOPITAL’S” rule. Firstly, differentiate the numerator and denominator with respect to $x$ then find the limit $x \to 1$.
Complete step-by-step solution:
Given, we have to find the value of \[\mathop {\lim }\limits_{x \to 1} \dfrac{{1 - {x^{\dfrac{{ - 1}}{3}}}}}{{1 - {x^{\dfrac{{ - 2}}{3}}}}}\].
By taking the limit $x \to 1$ of $\dfrac{{1 - {x^{\dfrac{{ - 1}}{3}}}}}{{1 - {x^{\dfrac{{ - 2}}{3}}}}}$ we get $\dfrac{0}{0}$ which is an indeterminate form.
Here, we have to apply the “L’HOPITAL’S” rule. According to which we have to differentiate the numerator and differentiate the denominator with respect to $x$. So, by differentiating we can write \[\mathop {\lim }\limits_{x \to 1} \dfrac{{1 - {x^{\dfrac{{ - 1}}{3}}}}}{{1 - {x^{\dfrac{{ - 2}}{3}}}}}\] as
$
\Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{ - \left( { - \dfrac{1}{3}{x^{ - \dfrac{1}{3} - 1}}} \right)}}{{ - \left( { - \dfrac{2}{3}{x^{ - \dfrac{2}{3} - 1}}} \right)}} \\
\Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{\dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}}}}{{\dfrac{2}{3}{x^{\dfrac{{ - 5}}{3}}}}}
$
Now, by taking limit $x \to 1$ we get
$ \Rightarrow \dfrac{{\dfrac{1}{3}\left( 1 \right)}}{{\dfrac{2}{3}\left( 1 \right)}} = \dfrac{1}{2}$
Thus, the value of \[\mathop {\lim }\limits_{x \to 1} \dfrac{{1 - {x^{\dfrac{{ - 1}}{3}}}}}{{1 - {x^{\dfrac{{ - 2}}{3}}}}}\] is $\dfrac{1}{2}$.
Note: L’HOPITL’S Rule:
If $\mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{0}{0}$ or $\mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{\infty }{\infty }$, then $\mathop {\lim }\limits_{x \to a} \dfrac{{f'\left( x \right)}}{{g'\left( x \right)}}$ is the required result.
So, this rule tells us that if we get $\dfrac{0}{0}$ or $\dfrac{\infty }{\infty }$ which is an indeterminate form then all we need to do is differentiate the numerator and differentiate the denominator and then take the limit $x \to a$which gives the required result.
Alternate method:
This can be solved by simply arranging the terms of the numerator and the denominator. We observed that the denominator of the given fraction is $1 - {x^{\dfrac{{ - 2}}{3}}}$ which can also be written as ${\left( 1 \right)^2} - {\left( {{x^{\dfrac{{ - 1}}{3}}}} \right)^2}$. Then, by using a mathematical identity ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$, we can write ${\left( 1 \right)^2} - {\left( {{x^{\dfrac{{ - 1}}{3}}}} \right)^2}$as $\left( {1 - {x^{\dfrac{{ - 1}}{3}}}} \right)\left( {1 + {x^{\dfrac{{ - 1}}{3}}}} \right)$.
So, the given fraction $\dfrac{{1 - {x^{\dfrac{{ - 1}}{3}}}}}{{1 - {x^{\dfrac{{ - 2}}{3}}}}}$ can be written as $\dfrac{{\left( {1 - {x^{\dfrac{{ - 1}}{3}}}} \right)}}{{\left( {1 - {x^{\dfrac{{ - 1}}{3}}}} \right)\left( {1 + {x^{\dfrac{{ - 1}}{3}}}} \right)}}$.
The term $\left( {1 - {x^{\dfrac{{ - 1}}{3}}}} \right)$ is present in both the numerator and the denominator so, it is cancelled out and the \[\mathop {\lim }\limits_{x \to 1} \dfrac{{1 - {x^{\dfrac{{ - 1}}{3}}}}}{{1 - {x^{\dfrac{{ - 2}}{3}}}}}\] can be written as $\mathop {\lim }\limits_{x \to 1} \dfrac{1}{{1 + {x^{\dfrac{{ - 1}}{3}}}}}$. Then we have to take its limit $x \to 1$.
Complete step-by-step solution:
Given, we have to find the value of \[\mathop {\lim }\limits_{x \to 1} \dfrac{{1 - {x^{\dfrac{{ - 1}}{3}}}}}{{1 - {x^{\dfrac{{ - 2}}{3}}}}}\].
By taking the limit $x \to 1$ of $\dfrac{{1 - {x^{\dfrac{{ - 1}}{3}}}}}{{1 - {x^{\dfrac{{ - 2}}{3}}}}}$ we get $\dfrac{0}{0}$ which is an indeterminate form.
Here, we have to apply the “L’HOPITAL’S” rule. According to which we have to differentiate the numerator and differentiate the denominator with respect to $x$. So, by differentiating we can write \[\mathop {\lim }\limits_{x \to 1} \dfrac{{1 - {x^{\dfrac{{ - 1}}{3}}}}}{{1 - {x^{\dfrac{{ - 2}}{3}}}}}\] as
$
\Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{ - \left( { - \dfrac{1}{3}{x^{ - \dfrac{1}{3} - 1}}} \right)}}{{ - \left( { - \dfrac{2}{3}{x^{ - \dfrac{2}{3} - 1}}} \right)}} \\
\Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{\dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}}}}{{\dfrac{2}{3}{x^{\dfrac{{ - 5}}{3}}}}}
$
Now, by taking limit $x \to 1$ we get
$ \Rightarrow \dfrac{{\dfrac{1}{3}\left( 1 \right)}}{{\dfrac{2}{3}\left( 1 \right)}} = \dfrac{1}{2}$
Thus, the value of \[\mathop {\lim }\limits_{x \to 1} \dfrac{{1 - {x^{\dfrac{{ - 1}}{3}}}}}{{1 - {x^{\dfrac{{ - 2}}{3}}}}}\] is $\dfrac{1}{2}$.
Note: L’HOPITL’S Rule:
If $\mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{0}{0}$ or $\mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{\infty }{\infty }$, then $\mathop {\lim }\limits_{x \to a} \dfrac{{f'\left( x \right)}}{{g'\left( x \right)}}$ is the required result.
So, this rule tells us that if we get $\dfrac{0}{0}$ or $\dfrac{\infty }{\infty }$ which is an indeterminate form then all we need to do is differentiate the numerator and differentiate the denominator and then take the limit $x \to a$which gives the required result.
Alternate method:
This can be solved by simply arranging the terms of the numerator and the denominator. We observed that the denominator of the given fraction is $1 - {x^{\dfrac{{ - 2}}{3}}}$ which can also be written as ${\left( 1 \right)^2} - {\left( {{x^{\dfrac{{ - 1}}{3}}}} \right)^2}$. Then, by using a mathematical identity ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$, we can write ${\left( 1 \right)^2} - {\left( {{x^{\dfrac{{ - 1}}{3}}}} \right)^2}$as $\left( {1 - {x^{\dfrac{{ - 1}}{3}}}} \right)\left( {1 + {x^{\dfrac{{ - 1}}{3}}}} \right)$.
So, the given fraction $\dfrac{{1 - {x^{\dfrac{{ - 1}}{3}}}}}{{1 - {x^{\dfrac{{ - 2}}{3}}}}}$ can be written as $\dfrac{{\left( {1 - {x^{\dfrac{{ - 1}}{3}}}} \right)}}{{\left( {1 - {x^{\dfrac{{ - 1}}{3}}}} \right)\left( {1 + {x^{\dfrac{{ - 1}}{3}}}} \right)}}$.
The term $\left( {1 - {x^{\dfrac{{ - 1}}{3}}}} \right)$ is present in both the numerator and the denominator so, it is cancelled out and the \[\mathop {\lim }\limits_{x \to 1} \dfrac{{1 - {x^{\dfrac{{ - 1}}{3}}}}}{{1 - {x^{\dfrac{{ - 2}}{3}}}}}\] can be written as $\mathop {\lim }\limits_{x \to 1} \dfrac{1}{{1 + {x^{\dfrac{{ - 1}}{3}}}}}$. Then we have to take its limit $x \to 1$.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Difference Between Plant Cell and Animal Cell