
Find the value of $\mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{(\sin x)(\cos x - \sin x - 1) + (\cos x)(\sin x + \cos x - 1)}}{x}} \right]$
Answer
613.8k+ views
Hint: In this question you need to find out the value of the given limit. Substitute in place of $x$ as 0, you will get $\dfrac{0}{0}$ form. Then use the L'Hospital rule that is differentiating numerator and denominator separately and substitute ‘x’ as 0 to get the answer.
Complete step-by-step answer:
Consider limit given,
$\Rightarrow \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{(\sin x)(\cos x - \sin x - 1) + (\cos x)(\sin x + \cos x - 1)}}{x}} \right]$---(1)
Now put $x = 0$
$ \Rightarrow \dfrac{{(\sin 0)(\cos 0 - \sin 0 - 1) + (\cos 0)(\sin 0 + \cos 0 - 1)}}{0}$
We know that $\sin 0 = 0$ and $\cos 0 = 1$
$ \Rightarrow \dfrac{{(0)(1 - 0 - 1) + 1(0 + 1 - 1)}}{0}$
$ \Rightarrow \dfrac{0}{0}$
Thus you will get $\dfrac{0}{0}$ form. If it is of $\dfrac{0}{0}$ form, then you need to apply L’hospital rule.
So, according to L’Hospital rule differentiate numerator and denominator separately with respect to $x$
Now applying L’Hospital rule for equation (1),
$\Rightarrow \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\dfrac{d}{{dx}}(\sin x)(\cos x - \sin x - 1) + \dfrac{d}{{dx}}(\cos x)(\sin x + \cos x - 1)}}{{\dfrac{d}{{dx}}(x)}}} \right]$---(2)
Applying product rule for equation (2),
$Product\;rule = \left[ {\dfrac{d}{{dx}}(uv) = u\dfrac{d}{{dx}}(v) + v\dfrac{d}{{dx}}(u)} \right]$
$\Rightarrow \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\left[ {\sin x\dfrac{d}{{dx}}(\cos x - \sin x - 1) + (\cos x - \sin x - 1)\dfrac{d}{{dx}}(\sin x) + (\cos x)\dfrac{d}{{dx}}(\sin x + \cos x - 1) + (\sin x + \cos x - 1)\dfrac{d}{{dx}}(\cos x)} \right]}}{{\dfrac{d}{{dx}}(x)}}} \right]$
We know that,
$\dfrac{d}{{dx}}(1) = 0$, $\dfrac{d}{{dx}}(x) = 1$, $\dfrac{d}{{dx}}(\sin x) = \cos x$ and $\dfrac{d}{{dx}}(\cos x) = - \sin x$
After differentiating i.e., by using formula we get,
$ \Rightarrow \mathop {\lim }\limits_{x \to 0} \left[ {\sin x( - \sin x - \cos x - 0) + (\cos x - \sin x - 1)(\cos x) + (\cos x)(\cos x - \sin x - 0) + ( - \sin x)(\sin x + \cos x - 1)} \right]$
On simplification we get,
$ \Rightarrow \mathop {\lim }\limits_{x \to 0} \left[ {\sin x( - \sin x - \cos x) + (\cos x - \sin x - 1)\cos x + \cos x(\cos x - \sin x) - \sin x(\sin x + \cos x - 1)} \right]$
Multiply the terms and solve,
$ \Rightarrow \mathop {\lim }\limits_{x \to 0} \left[ { - {{\sin }^2}x - \sin x\cos x + {{\cos }^2}x - \sin x\cos x - \cos x + {{\cos }^2}x - \sin x\cos x - {{\sin }^2}x - \sin x\cos x + \sin x} \right]$
$ \Rightarrow \mathop {\lim }\limits_{x \to 0} \left[ {2{{\cos }^2}x - 2{{\sin }^2}x - 4\sin x\cos x - \sin x - \cos x} \right]$
Now replace $x$ by 0 we get,
$ \Rightarrow 2{\cos ^2}(0) - 2{\sin ^2}(0) - 4\sin (0)\cos (0) - \sin (0) - \cos (0)$
$ \Rightarrow 2{(1)^2} - 2(0) - 4(0)(1) - 0 - 1$
$ \Rightarrow 2 - 1$
$ \Rightarrow 1$
Hence, the value is 1.
Note: To solve such questions check for $\dfrac{0}{0}$ form then only apply L’Hospital rule. And good understanding of the product rule of derivatives helps getting on the right track to reach the answer.
Complete step-by-step answer:
Consider limit given,
$\Rightarrow \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{(\sin x)(\cos x - \sin x - 1) + (\cos x)(\sin x + \cos x - 1)}}{x}} \right]$---(1)
Now put $x = 0$
$ \Rightarrow \dfrac{{(\sin 0)(\cos 0 - \sin 0 - 1) + (\cos 0)(\sin 0 + \cos 0 - 1)}}{0}$
We know that $\sin 0 = 0$ and $\cos 0 = 1$
$ \Rightarrow \dfrac{{(0)(1 - 0 - 1) + 1(0 + 1 - 1)}}{0}$
$ \Rightarrow \dfrac{0}{0}$
Thus you will get $\dfrac{0}{0}$ form. If it is of $\dfrac{0}{0}$ form, then you need to apply L’hospital rule.
So, according to L’Hospital rule differentiate numerator and denominator separately with respect to $x$
Now applying L’Hospital rule for equation (1),
$\Rightarrow \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\dfrac{d}{{dx}}(\sin x)(\cos x - \sin x - 1) + \dfrac{d}{{dx}}(\cos x)(\sin x + \cos x - 1)}}{{\dfrac{d}{{dx}}(x)}}} \right]$---(2)
Applying product rule for equation (2),
$Product\;rule = \left[ {\dfrac{d}{{dx}}(uv) = u\dfrac{d}{{dx}}(v) + v\dfrac{d}{{dx}}(u)} \right]$
$\Rightarrow \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\left[ {\sin x\dfrac{d}{{dx}}(\cos x - \sin x - 1) + (\cos x - \sin x - 1)\dfrac{d}{{dx}}(\sin x) + (\cos x)\dfrac{d}{{dx}}(\sin x + \cos x - 1) + (\sin x + \cos x - 1)\dfrac{d}{{dx}}(\cos x)} \right]}}{{\dfrac{d}{{dx}}(x)}}} \right]$
We know that,
$\dfrac{d}{{dx}}(1) = 0$, $\dfrac{d}{{dx}}(x) = 1$, $\dfrac{d}{{dx}}(\sin x) = \cos x$ and $\dfrac{d}{{dx}}(\cos x) = - \sin x$
After differentiating i.e., by using formula we get,
$ \Rightarrow \mathop {\lim }\limits_{x \to 0} \left[ {\sin x( - \sin x - \cos x - 0) + (\cos x - \sin x - 1)(\cos x) + (\cos x)(\cos x - \sin x - 0) + ( - \sin x)(\sin x + \cos x - 1)} \right]$
On simplification we get,
$ \Rightarrow \mathop {\lim }\limits_{x \to 0} \left[ {\sin x( - \sin x - \cos x) + (\cos x - \sin x - 1)\cos x + \cos x(\cos x - \sin x) - \sin x(\sin x + \cos x - 1)} \right]$
Multiply the terms and solve,
$ \Rightarrow \mathop {\lim }\limits_{x \to 0} \left[ { - {{\sin }^2}x - \sin x\cos x + {{\cos }^2}x - \sin x\cos x - \cos x + {{\cos }^2}x - \sin x\cos x - {{\sin }^2}x - \sin x\cos x + \sin x} \right]$
$ \Rightarrow \mathop {\lim }\limits_{x \to 0} \left[ {2{{\cos }^2}x - 2{{\sin }^2}x - 4\sin x\cos x - \sin x - \cos x} \right]$
Now replace $x$ by 0 we get,
$ \Rightarrow 2{\cos ^2}(0) - 2{\sin ^2}(0) - 4\sin (0)\cos (0) - \sin (0) - \cos (0)$
$ \Rightarrow 2{(1)^2} - 2(0) - 4(0)(1) - 0 - 1$
$ \Rightarrow 2 - 1$
$ \Rightarrow 1$
Hence, the value is 1.
Note: To solve such questions check for $\dfrac{0}{0}$ form then only apply L’Hospital rule. And good understanding of the product rule of derivatives helps getting on the right track to reach the answer.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

