Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Find the value of $\left( {\log 5 + \log 8 - 2\log 2} \right)$ is equal to
A) 1
B) 2
C) 0
D)-3

seo-qna
Last updated date: 23rd Jul 2024
Total views: 452.4k
Views today: 13.52k
Answer
VerifiedVerified
452.4k+ views
Hint: we are going to solve this problem by using basic logarithmic formulae.
Let the given expression be$x = \log 5 + \log 8 - 2\log 2$
$ \Rightarrow x = \log 5 + \log 8 - \log {2^2}$
$ \Rightarrow x = \log 5 + \log \left( {\frac{8}{4}} \right)$
$ \Rightarrow x = \log 5 + \log 2$
$ \Rightarrow x = \log (5 \times 2)$
$\therefore x = \log 10 = 1$

Note: we used the properties:
$\log {X^y} = y\log x$ ,
$\log X - \log Y = \log \frac{X}{Y}$
$\log X + \log Y = \log (X \cdot Y)$
We know that the value of log 10 = 1. [For natural logarithm]