
Find the value of ${\left[ {{{\left( {256} \right)}^{\dfrac{1}{2}}}} \right]^{\dfrac{1}{2}}}$.$$$$
Answer
591.9k+ views
Hint: To solve this problem, first we will use the law of exponents. Then, we will express the given number $256$ in power notation. We will use the law of exponents one more time to find required value.
Complete step-by-step solution
In this problem, to find the value of ${\left[ {{{\left( {256} \right)}^{\dfrac{1}{2}}}} \right]^{\dfrac{1}{2}}}$, first we will use the law ${\left( {{a^m}} \right)^n} = {a^{m\; \times \;n}}$. This is called the law of exponents.
Let us compare ${\left[ {{{\left( {256} \right)}^{\dfrac{1}{2}}}} \right]^{\dfrac{1}{2}}}$ with ${\left( {{a^m}} \right)^n}$ then we can say that $a = 256$ and $m = n = \dfrac{1}{2}$.
Now we are going to use the law ${\left( {{a^m}} \right)^n} = {a^{m\; \times \;n}}$. Therefore, ${\left[ {{{\left( {256} \right)}^{\dfrac{1}{2}}}} \right]^{\dfrac{1}{2}}} = {\left( {256} \right)^{\dfrac{1}{2}\; \times \;\dfrac{1}{2}}} = {\left( {256} \right)^{\dfrac{1}{4}}}$.
Now we are going to express the number $256$ in power notation with respect to power $m \times n$. Note that here $m \times n = \dfrac{1}{4}$. Therefore, $256 = 4 \times 4 \times 4 \times 4$
$ \Rightarrow 256 = {4^4}$
$ \Rightarrow {\left( {256} \right)^{\dfrac{1}{4}}} = {\left( {{4^4}} \right)^{\dfrac{1}{4}}}$
Now again we compare ${\left( {{4^4}} \right)^{\dfrac{1}{4}}}$ with ${\left( {{a^m}} \right)^n}$ then we can say that $a = 4$ and $m = 4,n = \dfrac{1}{4}$.
Now again we will use the law ${\left( {{a^m}} \right)^n} = {a^{m\; \times \;n}}$. Therefore, ${\left( {{4^4}} \right)^{\dfrac{1}{4}}} = {\left( 4 \right)^{4\; \times \;\dfrac{1}{4}}} = {4^1} = 4$
$ \Rightarrow {\left( {256} \right)^{\dfrac{1}{4}}} = 4$
Hence, the value of ${\left[ {{{\left( {256} \right)}^{\dfrac{1}{2}}}} \right]^{\dfrac{1}{2}}}$ is $4$.
Note: We can find the value of ${\left[ {{{\left( {256} \right)}^{\dfrac{1}{2}}}} \right]^{\dfrac{1}{2}}}$ by another method. First we will write the prime factorization of the number $256$. Then, we will use the law of exponents.
Here $256$ is an even number. So, we can start prime factorization with number $2$.
Therefore, $256 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 = {2^8}$.
Now we can write ${\left[ {{{\left( {256} \right)}^{\dfrac{1}{2}}}} \right]^{\dfrac{1}{2}}} = {\left[ {{{\left( {{2^8}} \right)}^{\dfrac{1}{2}}}} \right]^{\dfrac{1}{2}}}$
Now we are going to use the law ${\left( {{a^m}} \right)^n} = {a^{m\; \times \;n}}$. Therefore, we can write${\left[ {{{\left( {256} \right)}^{\dfrac{1}{2}}}} \right]^{\dfrac{1}{2}}} = {\left[ {{{\left( {{2^8}} \right)}^{\dfrac{1}{2}}}} \right]^{\dfrac{1}{2}}} = {\left( {{2^8}} \right)^{\dfrac{1}{2}\; \times \;\dfrac{1}{2}}} = {\left( {{2^8}} \right)^{\dfrac{1}{4}}}$
Now one more time we are going to use the law ${\left( {{a^m}} \right)^n} = {a^{m\; \times \;n}}$. Therefore, we can write
${\left[ {{{\left( {256} \right)}^{\dfrac{1}{2}}}} \right]^{\dfrac{1}{2}}} = {\left( {{2^8}} \right)^{\dfrac{1}{4}}} = {2^{8 \times \dfrac{1}{4}}} = {2^{\dfrac{8}{4}}} = {2^2} = 4$
Hence, the value of ${\left[ {{{\left( {256} \right)}^{\dfrac{1}{2}}}} \right]^{\dfrac{1}{2}}}$ is $4$.
Complete step-by-step solution
In this problem, to find the value of ${\left[ {{{\left( {256} \right)}^{\dfrac{1}{2}}}} \right]^{\dfrac{1}{2}}}$, first we will use the law ${\left( {{a^m}} \right)^n} = {a^{m\; \times \;n}}$. This is called the law of exponents.
Let us compare ${\left[ {{{\left( {256} \right)}^{\dfrac{1}{2}}}} \right]^{\dfrac{1}{2}}}$ with ${\left( {{a^m}} \right)^n}$ then we can say that $a = 256$ and $m = n = \dfrac{1}{2}$.
Now we are going to use the law ${\left( {{a^m}} \right)^n} = {a^{m\; \times \;n}}$. Therefore, ${\left[ {{{\left( {256} \right)}^{\dfrac{1}{2}}}} \right]^{\dfrac{1}{2}}} = {\left( {256} \right)^{\dfrac{1}{2}\; \times \;\dfrac{1}{2}}} = {\left( {256} \right)^{\dfrac{1}{4}}}$.
Now we are going to express the number $256$ in power notation with respect to power $m \times n$. Note that here $m \times n = \dfrac{1}{4}$. Therefore, $256 = 4 \times 4 \times 4 \times 4$
$ \Rightarrow 256 = {4^4}$
$ \Rightarrow {\left( {256} \right)^{\dfrac{1}{4}}} = {\left( {{4^4}} \right)^{\dfrac{1}{4}}}$
Now again we compare ${\left( {{4^4}} \right)^{\dfrac{1}{4}}}$ with ${\left( {{a^m}} \right)^n}$ then we can say that $a = 4$ and $m = 4,n = \dfrac{1}{4}$.
Now again we will use the law ${\left( {{a^m}} \right)^n} = {a^{m\; \times \;n}}$. Therefore, ${\left( {{4^4}} \right)^{\dfrac{1}{4}}} = {\left( 4 \right)^{4\; \times \;\dfrac{1}{4}}} = {4^1} = 4$
$ \Rightarrow {\left( {256} \right)^{\dfrac{1}{4}}} = 4$
Hence, the value of ${\left[ {{{\left( {256} \right)}^{\dfrac{1}{2}}}} \right]^{\dfrac{1}{2}}}$ is $4$.
Note: We can find the value of ${\left[ {{{\left( {256} \right)}^{\dfrac{1}{2}}}} \right]^{\dfrac{1}{2}}}$ by another method. First we will write the prime factorization of the number $256$. Then, we will use the law of exponents.
Here $256$ is an even number. So, we can start prime factorization with number $2$.
Therefore, $256 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 = {2^8}$.
Now we can write ${\left[ {{{\left( {256} \right)}^{\dfrac{1}{2}}}} \right]^{\dfrac{1}{2}}} = {\left[ {{{\left( {{2^8}} \right)}^{\dfrac{1}{2}}}} \right]^{\dfrac{1}{2}}}$
Now we are going to use the law ${\left( {{a^m}} \right)^n} = {a^{m\; \times \;n}}$. Therefore, we can write${\left[ {{{\left( {256} \right)}^{\dfrac{1}{2}}}} \right]^{\dfrac{1}{2}}} = {\left[ {{{\left( {{2^8}} \right)}^{\dfrac{1}{2}}}} \right]^{\dfrac{1}{2}}} = {\left( {{2^8}} \right)^{\dfrac{1}{2}\; \times \;\dfrac{1}{2}}} = {\left( {{2^8}} \right)^{\dfrac{1}{4}}}$
Now one more time we are going to use the law ${\left( {{a^m}} \right)^n} = {a^{m\; \times \;n}}$. Therefore, we can write
${\left[ {{{\left( {256} \right)}^{\dfrac{1}{2}}}} \right]^{\dfrac{1}{2}}} = {\left( {{2^8}} \right)^{\dfrac{1}{4}}} = {2^{8 \times \dfrac{1}{4}}} = {2^{\dfrac{8}{4}}} = {2^2} = 4$
Hence, the value of ${\left[ {{{\left( {256} \right)}^{\dfrac{1}{2}}}} \right]^{\dfrac{1}{2}}}$ is $4$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

