
Find the value of \[\left[ {\dfrac{3}{4}} \right] + \left[ {\dfrac{3}{4} + \dfrac{1}{{100}}} \right] + \left[ {\dfrac{3}{4} + \dfrac{2}{{100}}} \right] + ..... + \left[ {\dfrac{3}{4} + \dfrac{{99}}{{100}}} \right]\]
Answer
523.2k+ views
Hint: In the given question we need to find the value of the sum of the series.
For this case we will be using the condition such that:
\[\left[ x \right] = 0\] if \[x < 1\]
\[[x] = 1\] if \[2 > x > 1\]
Where the decimal values are made to be round of with 0 or 1 value.
Complete step-by-step answer:
In this problem,
Given: \[\left[ {\dfrac{3}{4}} \right] + \left[ {\dfrac{3}{4} + \dfrac{1}{{100}}} \right] + \left[ {\dfrac{3}{4} + \dfrac{2}{{100}}} \right] + ..... + \left[ {\dfrac{3}{4} + \dfrac{{99}}{{100}}} \right]\]
The value of \[\left[ {\dfrac{3}{4}} \right]\] = [0.75] = 0,
\[\left[ {\dfrac{3}{4} + \dfrac{1}{{100}}} \right]\]= [0.76] = 0
Until this the values are round off and we got the value as 0.
By the conditioned mentioned above,
\[\left[ x \right] = 0\] if \[x < 1\]
\[[x] = 1\]if \[2 > x > 1\]
For rounding up off decimal values to find the whole number using the sum of series.
\[\left[ {\dfrac{3}{4} + \dfrac{{25}}{{100}}} \right]\]= 1
i.e. Applying in the general term to find the first time of value 1.
\[\sum\limits_{r = 0}^{99} {\left[ {\dfrac{3}{4} + \dfrac{r}{{100}}} \right]} \]=1
Equating the value, to find the value of r.
\[\dfrac{r}{{100}} + \dfrac{3}{4} = 1\]
\[\dfrac{r}{{100}} = 1 - \dfrac{3}{4}\]
\[\dfrac{r}{{100}} = \dfrac{{4 - 3}}{4}\]
\[
\dfrac{r}{{100}} = \dfrac{1}{4} \\
r = \dfrac{1}{4} \times 100 \\
r = 25 \\
\]
On Calculating we find the value of r as 25, hence the first term with the value of 1 occurs from the 25th term.
Hence, with the following
\[\left[ {\dfrac{3}{4} + \dfrac{{26}}{{100}}} \right]\]= [1.01] = 1
\[\left[ {\dfrac{3}{4} + \dfrac{{99}}{{100}}} \right]\] = [1.74] = 1
(here the value becomes 1 due to the condition which we mentioned above)
Thus, \[\left[ {\dfrac{3}{4} + \dfrac{{26}}{{100}}} \right] + ..... + \left[ {\dfrac{3}{4} + \dfrac{{99}}{{100}}} \right]\] = 1+1+………. +1 = 74 (74 times repeats)
And with this combination \[\left[ {\dfrac{3}{4} + \dfrac{{25}}{{100}}} \right]\] = 1
Totally 75 times.
So, we have to solve \[\left[ {\dfrac{3}{4}} \right] + \left[ {\dfrac{3}{4} + \dfrac{1}{{100}}} \right] + \left[ {\dfrac{3}{4} + \dfrac{2}{{100}}} \right] + ..... + \left[ {\dfrac{3}{4} + \dfrac{{99}}{{100}}} \right]\]
\[\begin{array}{*{20}{l}}
{ = \left[ {0.75} \right] + \left[ {0.76} \right] + \left[ {0.77} \right] + \ldots \ldots \ldots . + \left[ {0.99} \right] + \left[ 1 \right] + \left[ {1.01} \right] + \ldots \ldots . + \left[ {1.74} \right]} \\
{ = 0 + 0 + 0 + \ldots \ldots \ldots . + 0 + 1 + 1 + ....... + {\text{ }}1{\text{ }}\left( {75{\text{ }}times} \right)} \\
{\; = 75.}
\end{array}\]
Therefore, \[\left[ {\dfrac{3}{4}} \right] + \left[ {\dfrac{3}{4} + \dfrac{1}{{100}}} \right] + \left[ {\dfrac{3}{4} + \dfrac{2}{{100}}} \right] + ..... + \left[ {\dfrac{3}{4} + \dfrac{{99}}{{100}}} \right]\] = 75
Note: For this kind of sum, we need to focus on the general term part rather than formula addicting level.
Majorly, after converting to general be consecutive on the term occurrence which is to be made to count to get the correct count without any error of calculation.
For this case we will be using the condition such that:
\[\left[ x \right] = 0\] if \[x < 1\]
\[[x] = 1\] if \[2 > x > 1\]
Where the decimal values are made to be round of with 0 or 1 value.
Complete step-by-step answer:
In this problem,
Given: \[\left[ {\dfrac{3}{4}} \right] + \left[ {\dfrac{3}{4} + \dfrac{1}{{100}}} \right] + \left[ {\dfrac{3}{4} + \dfrac{2}{{100}}} \right] + ..... + \left[ {\dfrac{3}{4} + \dfrac{{99}}{{100}}} \right]\]
The value of \[\left[ {\dfrac{3}{4}} \right]\] = [0.75] = 0,
\[\left[ {\dfrac{3}{4} + \dfrac{1}{{100}}} \right]\]= [0.76] = 0
Until this the values are round off and we got the value as 0.
By the conditioned mentioned above,
\[\left[ x \right] = 0\] if \[x < 1\]
\[[x] = 1\]if \[2 > x > 1\]
For rounding up off decimal values to find the whole number using the sum of series.
\[\left[ {\dfrac{3}{4} + \dfrac{{25}}{{100}}} \right]\]= 1
i.e. Applying in the general term to find the first time of value 1.
\[\sum\limits_{r = 0}^{99} {\left[ {\dfrac{3}{4} + \dfrac{r}{{100}}} \right]} \]=1
Equating the value, to find the value of r.
\[\dfrac{r}{{100}} + \dfrac{3}{4} = 1\]
\[\dfrac{r}{{100}} = 1 - \dfrac{3}{4}\]
\[\dfrac{r}{{100}} = \dfrac{{4 - 3}}{4}\]
\[
\dfrac{r}{{100}} = \dfrac{1}{4} \\
r = \dfrac{1}{4} \times 100 \\
r = 25 \\
\]
On Calculating we find the value of r as 25, hence the first term with the value of 1 occurs from the 25th term.
Hence, with the following
\[\left[ {\dfrac{3}{4} + \dfrac{{26}}{{100}}} \right]\]= [1.01] = 1
\[\left[ {\dfrac{3}{4} + \dfrac{{99}}{{100}}} \right]\] = [1.74] = 1
(here the value becomes 1 due to the condition which we mentioned above)
Thus, \[\left[ {\dfrac{3}{4} + \dfrac{{26}}{{100}}} \right] + ..... + \left[ {\dfrac{3}{4} + \dfrac{{99}}{{100}}} \right]\] = 1+1+………. +1 = 74 (74 times repeats)
And with this combination \[\left[ {\dfrac{3}{4} + \dfrac{{25}}{{100}}} \right]\] = 1
Totally 75 times.
So, we have to solve \[\left[ {\dfrac{3}{4}} \right] + \left[ {\dfrac{3}{4} + \dfrac{1}{{100}}} \right] + \left[ {\dfrac{3}{4} + \dfrac{2}{{100}}} \right] + ..... + \left[ {\dfrac{3}{4} + \dfrac{{99}}{{100}}} \right]\]
\[\begin{array}{*{20}{l}}
{ = \left[ {0.75} \right] + \left[ {0.76} \right] + \left[ {0.77} \right] + \ldots \ldots \ldots . + \left[ {0.99} \right] + \left[ 1 \right] + \left[ {1.01} \right] + \ldots \ldots . + \left[ {1.74} \right]} \\
{ = 0 + 0 + 0 + \ldots \ldots \ldots . + 0 + 1 + 1 + ....... + {\text{ }}1{\text{ }}\left( {75{\text{ }}times} \right)} \\
{\; = 75.}
\end{array}\]
Therefore, \[\left[ {\dfrac{3}{4}} \right] + \left[ {\dfrac{3}{4} + \dfrac{1}{{100}}} \right] + \left[ {\dfrac{3}{4} + \dfrac{2}{{100}}} \right] + ..... + \left[ {\dfrac{3}{4} + \dfrac{{99}}{{100}}} \right]\] = 75
Note: For this kind of sum, we need to focus on the general term part rather than formula addicting level.
Majorly, after converting to general be consecutive on the term occurrence which is to be made to count to get the correct count without any error of calculation.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

