
Find the value of \[k\]if which the function \[f\left( x \right)=\left\{ \begin{align}
& {{\left( \dfrac{4}{5} \right)}^{\dfrac{\tan 4x}{\tan 5x}}},0 < x < \dfrac{\pi }{2} \\
& k+\dfrac{2}{5}\,\,\,\,\,\,\,,x=\dfrac{\pi }{2}\, \\
\end{align} \right.\] is continuous at \[x=\dfrac{\pi }{2}\].
(a) \[\dfrac{17}{20}\]
(b) \[\dfrac{2}{5}\]
(c) \[\dfrac{3}{5}\]
(d) \[-\dfrac{2}{5}\]
Answer
555.6k+ views
Hint: In this question, in order to the value of \[k\] given the function \[f\left( x \right)=\left\{ \begin{align}
& {{\left( \dfrac{4}{5} \right)}^{\dfrac{\tan 4x}{\tan 5x}}},0 < x < \dfrac{\pi }{2} \\
& k+\dfrac{2}{5}\,\,\,\,\,\,\,,x=\dfrac{\pi }{2}\, \\
\end{align} \right.\] which is continuous at \[x=\dfrac{\pi }{2}\]. Now we know that if a function \[f\left( x \right)\] is continuous at \[x=a\], then we have \[\displaystyle \lim_{x \to a}f\left( x \right)=f\left( a \right)\]. Therefore here we should have \[\displaystyle \lim_{x \to \dfrac{\pi }{2}}f\left( x \right)=f\left( \dfrac{\pi }{2} \right)\]. This is true because of the fact that if a \[f\left( x \right)\] is continuous at \[x=a\] then \[\displaystyle \lim_{x \to a}f\left( x \right)=f\left( \displaystyle \lim_{x \to a}x \right)\]. Using these properties for continuous functions we will get our desired answer.
Complete step by step answer:
Let the function \[f\] is defined by \[f\left( x \right)=\left\{ \begin{align}
& {{\left( \dfrac{4}{5} \right)}^{\dfrac{\tan 4x}{\tan 5x}}},0 < x < \dfrac{\pi }{2} \\
& k+\dfrac{2}{5}\,\,\,\,\,\,\,,x=\dfrac{\pi }{2}\, \\
\end{align} \right.\].
Now for the values of \[x\] such that \[0 < x < \dfrac{\pi }{2}\], we have that
\[f\left( x \right)={{\left( \dfrac{4}{5} \right)}^{\dfrac{\tan 4x}{\tan 5x}}}\]
Since we know that if a function \[f\left( x \right)\] is continuous at \[x=a\], then we have \[\displaystyle \lim_{x \to a}f\left( x \right)=f\left( a \right)\].
Therefore here we should have \[\displaystyle \lim_{x \to \dfrac{\pi }{2}}f\left( x \right)=f\left( \dfrac{\pi }{2} \right)\].
Now since \[f\left( x \right)={{\left( \dfrac{4}{5} \right)}^{\dfrac{\tan 4x}{\tan 5x}}}\] and \[f\left( \dfrac{\pi }{2} \right)=k+\dfrac{2}{5}\], therefore we have that
\[\displaystyle \lim_{x \to \dfrac{\pi }{2}}{{\left( \dfrac{4}{5} \right)}^{\dfrac{\tan 4x}{\tan 5x}}}=k+\dfrac{2}{5}............(1)\]
Now since we have the property of trigonometric function that \[\dfrac{1}{\tan x}=\cot x\], therefore we have
\[\dfrac{\tan 4x}{\tan 5x}=\tan 4x\cot 5x...........(2)\]
Substituting the value in equation (2) in (1), we get
\[\displaystyle \lim_{x \to \dfrac{\pi }{2}}{{\left( \dfrac{4}{5} \right)}^{\tan 4x\cot 5x}}=k+\dfrac{2}{5}\]
Since we know that if a \[f\left( x \right)\] is continuous at \[x=a\] then \[\displaystyle \lim_{x \to a}f\left( x \right)=f\left( \displaystyle \lim_{x \to a}x \right)\].
Therefore using this, we get that
\[\begin{align}
& \displaystyle \lim_{x \to \dfrac{\pi }{2}}{{\left( \dfrac{4}{5} \right)}^{\tan 4x\cot 5x}}=k+\dfrac{2}{5} \\
& \Rightarrow {{\left( \dfrac{4}{5} \right)}^{\displaystyle \lim_{x \to \dfrac{\pi }{2}}\left( \tan 4x\cot 5x \right)}}=k+\dfrac{2}{5}........(3)
\end{align}\]
Now we will evaluate the limit \[\displaystyle \lim_{x \to \dfrac{\pi }{2}}\left( \tan 4x\cot 5x \right)\].
Then we have
\[\begin{align}
& \displaystyle \lim_{x \to \dfrac{\pi }{2}}\left( \tan 4x\tan 5x \right)=\tan 4\left( \dfrac{\pi }{2} \right)\cot 5\left( \dfrac{\pi }{2} \right) \\
& =\tan 2\pi \cot \dfrac{5\pi }{4}
\end{align}\]
Now since the value of \[\tan 2\pi =0\], therefore we have
\[\begin{align}
& \displaystyle \lim_{x \to \dfrac{\pi }{2}}\left( \tan 4x\tan 5x \right)=\tan 2\pi \cot \dfrac{5\pi }{4} \\
& =0
\end{align}\]
Therefore using the above value in the limit in equation (3), we get
\[\begin{align}
& {{\left( \dfrac{4}{5} \right)}^{\displaystyle \lim_{x \to \dfrac{\pi }{2}}\left( \tan 4x\cot 5x \right)}}=k+\dfrac{2}{5} \\
& \Rightarrow {{\dfrac{4}{5}}^{0}}=k+\dfrac{2}{5} \\
\end{align}\]
Now since \[{{a}^{0}}=1\] for all values of \[a\], therefore from the above equation we have,
\[\begin{align}
& 1=k+\dfrac{2}{5} \\
& \Rightarrow k=1-\dfrac{2}{5} \\
& \Rightarrow k=\dfrac{5-2}{5} \\
& \Rightarrow k=\dfrac{3}{5} \\
\end{align}\]
Therefore we have that the value of \[k\] is equal to \[\dfrac{3}{5}\].
So, the correct answer is “Option C”.
Note: In this problem, we know that if a function \[f\left( x \right)\] is continuous at \[x=a\], then we have \[\displaystyle \lim_{x \to a}f\left( x \right)=f\left( a \right)\]. Therefore here we should have \[\displaystyle \lim_{x \to \dfrac{\pi }{2}}f\left( x \right)=f\left( \dfrac{\pi }{2} \right)\]. This is true because of the fact that if a \[f\left( x \right)\] is continuous at \[x=a\] then \[\displaystyle \lim_{x \to a}f\left( x \right)=f\left( \displaystyle \lim_{x \to a}x \right)\].we are using this same property while evaluating the limit \[\displaystyle \lim_{x \to \dfrac{\pi }{2}}{{\left( \dfrac{4}{5} \right)}^{\tan 4x\cot 5x}}\].
& {{\left( \dfrac{4}{5} \right)}^{\dfrac{\tan 4x}{\tan 5x}}},0 < x < \dfrac{\pi }{2} \\
& k+\dfrac{2}{5}\,\,\,\,\,\,\,,x=\dfrac{\pi }{2}\, \\
\end{align} \right.\] which is continuous at \[x=\dfrac{\pi }{2}\]. Now we know that if a function \[f\left( x \right)\] is continuous at \[x=a\], then we have \[\displaystyle \lim_{x \to a}f\left( x \right)=f\left( a \right)\]. Therefore here we should have \[\displaystyle \lim_{x \to \dfrac{\pi }{2}}f\left( x \right)=f\left( \dfrac{\pi }{2} \right)\]. This is true because of the fact that if a \[f\left( x \right)\] is continuous at \[x=a\] then \[\displaystyle \lim_{x \to a}f\left( x \right)=f\left( \displaystyle \lim_{x \to a}x \right)\]. Using these properties for continuous functions we will get our desired answer.
Complete step by step answer:
Let the function \[f\] is defined by \[f\left( x \right)=\left\{ \begin{align}
& {{\left( \dfrac{4}{5} \right)}^{\dfrac{\tan 4x}{\tan 5x}}},0 < x < \dfrac{\pi }{2} \\
& k+\dfrac{2}{5}\,\,\,\,\,\,\,,x=\dfrac{\pi }{2}\, \\
\end{align} \right.\].
Now for the values of \[x\] such that \[0 < x < \dfrac{\pi }{2}\], we have that
\[f\left( x \right)={{\left( \dfrac{4}{5} \right)}^{\dfrac{\tan 4x}{\tan 5x}}}\]
Since we know that if a function \[f\left( x \right)\] is continuous at \[x=a\], then we have \[\displaystyle \lim_{x \to a}f\left( x \right)=f\left( a \right)\].
Therefore here we should have \[\displaystyle \lim_{x \to \dfrac{\pi }{2}}f\left( x \right)=f\left( \dfrac{\pi }{2} \right)\].
Now since \[f\left( x \right)={{\left( \dfrac{4}{5} \right)}^{\dfrac{\tan 4x}{\tan 5x}}}\] and \[f\left( \dfrac{\pi }{2} \right)=k+\dfrac{2}{5}\], therefore we have that
\[\displaystyle \lim_{x \to \dfrac{\pi }{2}}{{\left( \dfrac{4}{5} \right)}^{\dfrac{\tan 4x}{\tan 5x}}}=k+\dfrac{2}{5}............(1)\]
Now since we have the property of trigonometric function that \[\dfrac{1}{\tan x}=\cot x\], therefore we have
\[\dfrac{\tan 4x}{\tan 5x}=\tan 4x\cot 5x...........(2)\]
Substituting the value in equation (2) in (1), we get
\[\displaystyle \lim_{x \to \dfrac{\pi }{2}}{{\left( \dfrac{4}{5} \right)}^{\tan 4x\cot 5x}}=k+\dfrac{2}{5}\]
Since we know that if a \[f\left( x \right)\] is continuous at \[x=a\] then \[\displaystyle \lim_{x \to a}f\left( x \right)=f\left( \displaystyle \lim_{x \to a}x \right)\].
Therefore using this, we get that
\[\begin{align}
& \displaystyle \lim_{x \to \dfrac{\pi }{2}}{{\left( \dfrac{4}{5} \right)}^{\tan 4x\cot 5x}}=k+\dfrac{2}{5} \\
& \Rightarrow {{\left( \dfrac{4}{5} \right)}^{\displaystyle \lim_{x \to \dfrac{\pi }{2}}\left( \tan 4x\cot 5x \right)}}=k+\dfrac{2}{5}........(3)
\end{align}\]
Now we will evaluate the limit \[\displaystyle \lim_{x \to \dfrac{\pi }{2}}\left( \tan 4x\cot 5x \right)\].
Then we have
\[\begin{align}
& \displaystyle \lim_{x \to \dfrac{\pi }{2}}\left( \tan 4x\tan 5x \right)=\tan 4\left( \dfrac{\pi }{2} \right)\cot 5\left( \dfrac{\pi }{2} \right) \\
& =\tan 2\pi \cot \dfrac{5\pi }{4}
\end{align}\]
Now since the value of \[\tan 2\pi =0\], therefore we have
\[\begin{align}
& \displaystyle \lim_{x \to \dfrac{\pi }{2}}\left( \tan 4x\tan 5x \right)=\tan 2\pi \cot \dfrac{5\pi }{4} \\
& =0
\end{align}\]
Therefore using the above value in the limit in equation (3), we get
\[\begin{align}
& {{\left( \dfrac{4}{5} \right)}^{\displaystyle \lim_{x \to \dfrac{\pi }{2}}\left( \tan 4x\cot 5x \right)}}=k+\dfrac{2}{5} \\
& \Rightarrow {{\dfrac{4}{5}}^{0}}=k+\dfrac{2}{5} \\
\end{align}\]
Now since \[{{a}^{0}}=1\] for all values of \[a\], therefore from the above equation we have,
\[\begin{align}
& 1=k+\dfrac{2}{5} \\
& \Rightarrow k=1-\dfrac{2}{5} \\
& \Rightarrow k=\dfrac{5-2}{5} \\
& \Rightarrow k=\dfrac{3}{5} \\
\end{align}\]
Therefore we have that the value of \[k\] is equal to \[\dfrac{3}{5}\].
So, the correct answer is “Option C”.
Note: In this problem, we know that if a function \[f\left( x \right)\] is continuous at \[x=a\], then we have \[\displaystyle \lim_{x \to a}f\left( x \right)=f\left( a \right)\]. Therefore here we should have \[\displaystyle \lim_{x \to \dfrac{\pi }{2}}f\left( x \right)=f\left( \dfrac{\pi }{2} \right)\]. This is true because of the fact that if a \[f\left( x \right)\] is continuous at \[x=a\] then \[\displaystyle \lim_{x \to a}f\left( x \right)=f\left( \displaystyle \lim_{x \to a}x \right)\].we are using this same property while evaluating the limit \[\displaystyle \lim_{x \to \dfrac{\pi }{2}}{{\left( \dfrac{4}{5} \right)}^{\tan 4x\cot 5x}}\].
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

