
Find the value of k if
(i)${1^3} + {2^3} + {3^3} + ........ + {k^3} = 6084$
(ii)${1^3} + {2^3} + {3^3} + ........ + {k^3} = 2025$
Answer
616.8k+ views
Hint: In this question, we have the sum of the cubes of natural numbers. So in order to evaluate the cubes the value of k, we will simply use the formula of sum of cubes of n natural numbers which is given by
${S_n} = {\left[ {\dfrac{{n(n + 1)}}{2}} \right]^2}$
Complete step-by-step answer:
(i) In the given series \[{1^3} + {2^3} + {3^3} + ........ + {k^3} = 6084\] represents the sum of cubes of natural numbers upto k . Thus, we can write the formula instead of the series and that is:
Sum cubes of n natural numbers is ${S_n} = {\left[ {\dfrac{{n(n + 1)}}{2}} \right]^2}$
Substitute n= k and ${S_n} = 6084$ in above formula
\[
\Rightarrow {\left( {\dfrac{{k\left( {k + 1} \right)}}{2}} \right)^2} = 6084 \\
\Rightarrow \left( {\dfrac{{k\left( {k + 1} \right)}}{2}} \right) = \sqrt {6084} \\
\Rightarrow \left( {\dfrac{{k\left( {k + 1} \right)}}{2}} \right) = \sqrt {78 \times 78} \\
\Rightarrow \left( {\dfrac{{k\left( {k + 1} \right)}}{2}} \right) = 78 \\
\Rightarrow \left( {\dfrac{{{k^2} + k}}{2}} \right) = 78 \\
\Rightarrow {k^2} + k = 78 \times 2 \\
\Rightarrow {k^2} + k = 156 \\
\Rightarrow {k^2} + k - 156 = 0 \\
\Rightarrow {k^2} - 12k + 13k - 156 = 0 \\
\]
By splitting the middle term, we get
\[
\Rightarrow k\left( {k - 12} \right) + 13\left( {k - 12} \right) = 0 \\
\Rightarrow \left( {k - 12} \right)\left( {k + 13} \right) = 0 \\
\Rightarrow (k - 12{\text{)}} = 0{\text{ }}or{\text{ (}}k + 13) = 0 \\
\Rightarrow k = 12{\text{ }}or{\text{ }}k = - 13 \\
\]
\[k = - 13\] is neglected because natural numbers cannot be negative.
Hence value of $k = 12$
(ii) In the given series \[{1^3} + {2^3} + {3^3} + ........ + {k^3} = 2025\] represents the sum of cubes of natural numbers upto k . Thus, we can write the formula instead of the series and that is:
Sum cubes of n natural numbers is ${S_n} = {\left[ {\dfrac{{n(n + 1)}}{2}} \right]^2}$
Substitute n= k and ${S_n} = 2025$ in above formula
\[
\Rightarrow {\left( {\dfrac{{k\left( {k + 1} \right)}}{2}} \right)^2} = 2025 \\
\Rightarrow \left( {\dfrac{{k\left( {k + 1} \right)}}{2}} \right) = \sqrt {2025} \\
\Rightarrow \left( {\dfrac{{k\left( {k + 1} \right)}}{2}} \right) = \sqrt {45 \times 45} \\
\Rightarrow \left( {\dfrac{{k\left( {k + 1} \right)}}{2}} \right) = 45 \\
\Rightarrow \left( {\dfrac{{{k^2} + k}}{2}} \right) = 45 \\
\Rightarrow {k^2} + k = 45 \times 2 \\
\Rightarrow {k^2} + k = 90 \\
\Rightarrow {k^2} + k - 90 = 0 \\
\Rightarrow {k^2} + 10k - 9k - 90 = 0 \\
\]
By splitting the middle term, we get
\[
\Rightarrow k\left( {k + 10} \right) - 9\left( {k + 10} \right) = 0 \\
\Rightarrow \left( {k + 10} \right)\left( {k - 9} \right) = 0 \\
\Rightarrow (k - {\text{9 )}} = 0{\text{ }}or{\text{ (}}k + 10) = 0 \\
\Rightarrow k = 9{\text{ }}or{\text{ }}k = - 10 \\
\]
\[k = - 10\] is neglected because natural numbers cannot be negative.
Hence value of $k = 9$
Note: In order to solve these types of questions, remember all the formulas of sum of n natural numbers, sum of square of n natural numbers and sum of cubes of n natural numbers. With the help of these, the sum of other special series can also be calculated,and few basic concepts of solving algebraic equations are also necessary in order to solve these types of questions.
${S_n} = {\left[ {\dfrac{{n(n + 1)}}{2}} \right]^2}$
Complete step-by-step answer:
(i) In the given series \[{1^3} + {2^3} + {3^3} + ........ + {k^3} = 6084\] represents the sum of cubes of natural numbers upto k . Thus, we can write the formula instead of the series and that is:
Sum cubes of n natural numbers is ${S_n} = {\left[ {\dfrac{{n(n + 1)}}{2}} \right]^2}$
Substitute n= k and ${S_n} = 6084$ in above formula
\[
\Rightarrow {\left( {\dfrac{{k\left( {k + 1} \right)}}{2}} \right)^2} = 6084 \\
\Rightarrow \left( {\dfrac{{k\left( {k + 1} \right)}}{2}} \right) = \sqrt {6084} \\
\Rightarrow \left( {\dfrac{{k\left( {k + 1} \right)}}{2}} \right) = \sqrt {78 \times 78} \\
\Rightarrow \left( {\dfrac{{k\left( {k + 1} \right)}}{2}} \right) = 78 \\
\Rightarrow \left( {\dfrac{{{k^2} + k}}{2}} \right) = 78 \\
\Rightarrow {k^2} + k = 78 \times 2 \\
\Rightarrow {k^2} + k = 156 \\
\Rightarrow {k^2} + k - 156 = 0 \\
\Rightarrow {k^2} - 12k + 13k - 156 = 0 \\
\]
By splitting the middle term, we get
\[
\Rightarrow k\left( {k - 12} \right) + 13\left( {k - 12} \right) = 0 \\
\Rightarrow \left( {k - 12} \right)\left( {k + 13} \right) = 0 \\
\Rightarrow (k - 12{\text{)}} = 0{\text{ }}or{\text{ (}}k + 13) = 0 \\
\Rightarrow k = 12{\text{ }}or{\text{ }}k = - 13 \\
\]
\[k = - 13\] is neglected because natural numbers cannot be negative.
Hence value of $k = 12$
(ii) In the given series \[{1^3} + {2^3} + {3^3} + ........ + {k^3} = 2025\] represents the sum of cubes of natural numbers upto k . Thus, we can write the formula instead of the series and that is:
Sum cubes of n natural numbers is ${S_n} = {\left[ {\dfrac{{n(n + 1)}}{2}} \right]^2}$
Substitute n= k and ${S_n} = 2025$ in above formula
\[
\Rightarrow {\left( {\dfrac{{k\left( {k + 1} \right)}}{2}} \right)^2} = 2025 \\
\Rightarrow \left( {\dfrac{{k\left( {k + 1} \right)}}{2}} \right) = \sqrt {2025} \\
\Rightarrow \left( {\dfrac{{k\left( {k + 1} \right)}}{2}} \right) = \sqrt {45 \times 45} \\
\Rightarrow \left( {\dfrac{{k\left( {k + 1} \right)}}{2}} \right) = 45 \\
\Rightarrow \left( {\dfrac{{{k^2} + k}}{2}} \right) = 45 \\
\Rightarrow {k^2} + k = 45 \times 2 \\
\Rightarrow {k^2} + k = 90 \\
\Rightarrow {k^2} + k - 90 = 0 \\
\Rightarrow {k^2} + 10k - 9k - 90 = 0 \\
\]
By splitting the middle term, we get
\[
\Rightarrow k\left( {k + 10} \right) - 9\left( {k + 10} \right) = 0 \\
\Rightarrow \left( {k + 10} \right)\left( {k - 9} \right) = 0 \\
\Rightarrow (k - {\text{9 )}} = 0{\text{ }}or{\text{ (}}k + 10) = 0 \\
\Rightarrow k = 9{\text{ }}or{\text{ }}k = - 10 \\
\]
\[k = - 10\] is neglected because natural numbers cannot be negative.
Hence value of $k = 9$
Note: In order to solve these types of questions, remember all the formulas of sum of n natural numbers, sum of square of n natural numbers and sum of cubes of n natural numbers. With the help of these, the sum of other special series can also be calculated,and few basic concepts of solving algebraic equations are also necessary in order to solve these types of questions.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

