
Find the value of \[\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^{1000}}xdx}}{{{{\sin }^{1000}}x + {{\cos }^{1000}}x}}} \] is equal to
A) 1000
B) 1
C)$\dfrac{\pi }{2} $
D)$\dfrac{\pi }{4} $
Answer
615.6k+ views
Hint: Here we will solve the problem by using the definite integral property $\int\limits_a^b {f(x)dx = \int\limits_a^b {f(a + b - x)dx} } $
Complete step-by-step answer:
Given value is \[\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^{1000}}xdx}}{{{{\sin }^{1000}}x + {{\cos }^{1000}}x}}} \]
Now by using the definite integral property i.e. $\int\limits_a^b {f(x)dx = \int\limits_a^b {f(a + b - x)dx} } $
Let us solve the problem
Now if we consider each term in the numerator and denominator of given value as $f(x)$
Then we write the value as
I = $\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^{1000}}(\dfrac{\pi }{2} - x)}}{{{{\sin }^{1000}}(\dfrac{\pi }{2} - x) + {{\cos }^{1000}}(\dfrac{\pi }{2} - x)}}} dx \to 1$
We know that
$\sin (\dfrac{\pi }{2} - x) = \cos x$ $ \Rightarrow {\sin ^{1000}}(\dfrac{\pi }{2} - x) = {\cos ^{1000}}x$
$\cos (\dfrac{\pi }{2} - x) = \sin x \Rightarrow {\cos ^{1000}}(\dfrac{\pi }{2} - x) = \sin x$
From this we can rewrite the value as
$ \Rightarrow \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{{{\cos }^{1000}}xdx}}{{{{\cos }^{1000}}x + {{\sin }^{1000}}x}}} \to 2$
Now by adding equation 1 and 2 we get the value as
$2I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{{{\cos }^{1000}}x + {{\sin }^{1000}}x}}{{{{\cos }^{1000}}x + {{\sin }^{1000}}x}}} dx$
Here in the above term, numerator and denominator has same value so it get cancels and the value after cancellation is 1
So the term can be written as
$ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}}{1dx} $
We know that $\int {1dx = x} $ so let us apply the limits for $x$ term
$ \Rightarrow 2I \Rightarrow {[x]_0}^{\dfrac{\pi }{2}}$
$ \Rightarrow 2I = \dfrac{\pi }{2} - 0$
$ \Rightarrow I = \dfrac{\pi }{4}$
Therefore the given value is equals to $\dfrac{\pi }{4}$
Option D is the correct
Note: Make a note that we have to apply definite integral properties for this kind of problem. If needed conversions of values have to be done like the above solution.
Complete step-by-step answer:
Given value is \[\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^{1000}}xdx}}{{{{\sin }^{1000}}x + {{\cos }^{1000}}x}}} \]
Now by using the definite integral property i.e. $\int\limits_a^b {f(x)dx = \int\limits_a^b {f(a + b - x)dx} } $
Let us solve the problem
Now if we consider each term in the numerator and denominator of given value as $f(x)$
Then we write the value as
I = $\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^{1000}}(\dfrac{\pi }{2} - x)}}{{{{\sin }^{1000}}(\dfrac{\pi }{2} - x) + {{\cos }^{1000}}(\dfrac{\pi }{2} - x)}}} dx \to 1$
We know that
$\sin (\dfrac{\pi }{2} - x) = \cos x$ $ \Rightarrow {\sin ^{1000}}(\dfrac{\pi }{2} - x) = {\cos ^{1000}}x$
$\cos (\dfrac{\pi }{2} - x) = \sin x \Rightarrow {\cos ^{1000}}(\dfrac{\pi }{2} - x) = \sin x$
From this we can rewrite the value as
$ \Rightarrow \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{{{\cos }^{1000}}xdx}}{{{{\cos }^{1000}}x + {{\sin }^{1000}}x}}} \to 2$
Now by adding equation 1 and 2 we get the value as
$2I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{{{\cos }^{1000}}x + {{\sin }^{1000}}x}}{{{{\cos }^{1000}}x + {{\sin }^{1000}}x}}} dx$
Here in the above term, numerator and denominator has same value so it get cancels and the value after cancellation is 1
So the term can be written as
$ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}}{1dx} $
We know that $\int {1dx = x} $ so let us apply the limits for $x$ term
$ \Rightarrow 2I \Rightarrow {[x]_0}^{\dfrac{\pi }{2}}$
$ \Rightarrow 2I = \dfrac{\pi }{2} - 0$
$ \Rightarrow I = \dfrac{\pi }{4}$
Therefore the given value is equals to $\dfrac{\pi }{4}$
Option D is the correct
Note: Make a note that we have to apply definite integral properties for this kind of problem. If needed conversions of values have to be done like the above solution.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

