
Find the value of given matrix \[\left( \begin{matrix}
ax & by & cz \\
{{x}^{2}} & {{y}^{2}} & {{z}^{2}} \\
1 & 1 & 1 \\
\end{matrix} \right)\]
(a) \[\left( \begin{matrix}
a & b & c \\
x & y & z \\
yz & xz & xy \\
\end{matrix} \right)\]
(b) \[\left( \begin{matrix}
x & y & z \\
a & b & c \\
yz & xz & xy \\
\end{matrix} \right)\]
(c) \[\left( \begin{matrix}
{{x}^{2}} & {{y}^{2}} & {{z}^{2}} \\
{{a}^{2}} & {{b}^{2}} & {{c}^{2}} \\
1 & 1 & 1 \\
\end{matrix} \right)\]
(d) \[~\left( \begin{matrix}
{{x}^{{}}} & {{y}^{{}}} & {{z}^{{}}} \\
{{a}^{2}} & {{b}^{2}} & {{c}^{2}} \\
1 & 1 & 1 \\
\end{matrix} \right)\]
Answer
617.1k+ views
Hint: We will solve this question which is given n matrix form by using the properties of determinant and matrices. We will make necessary arrangements in between rows and columns of the given matrix and apply properties of the matrices to obtain the solution of the given question.
Complete step-by-step answer:
We have to find the value of \[\left( \begin{matrix}
ax & by & cz \\
{{x}^{2}} & {{y}^{2}} & {{z}^{2}} \\
1 & 1 & 1 \\
\end{matrix} \right)\].
Taking x common from Column 1- C1, y common from Column2-C2 and z common from Column 3-C3 from the above given matrix we have,
\[\left( \begin{matrix}
ax & by & cz \\
{{x}^{2}} & {{y}^{2}} & {{z}^{2}} \\
1 & 1 & 1 \\
\end{matrix} \right)=xyz\left( \begin{matrix}
a & b & c \\
x & y & z \\
\dfrac{1}{x} & \dfrac{1}{y} & \dfrac{1}{z} \\
\end{matrix} \right)\]
We need to make necessary arrangements to eliminate the xyz part which is common on the right hand side matrix. To do it we multiply xyz inside only with R3, that is the third row, we get
\[\left( \begin{matrix}
ax & by & cz \\
{{x}^{2}} & {{y}^{2}} & {{z}^{2}} \\
1 & 1 & 1 \\
\end{matrix} \right)=\left( \begin{matrix}
a & b & c \\
x & y & z \\
\dfrac{xyz}{x} & \dfrac{xyz}{y} & \dfrac{xyz}{z} \\
\end{matrix} \right)\]
Now we solve the right-hand side of the obtained equation by cancelling x obtained at the position (3,1), i.e. third row and first column , by cancelling y at the position (3,2) i.e. third row second column and by cancelling z at the position (3,3) i.e. third row and third column we get,
\[\left( \begin{matrix}
ax & by & cz \\
{{x}^{2}} & {{y}^{2}} & {{z}^{2}} \\
1 & 1 & 1 \\
\end{matrix} \right)=\left( \begin{matrix}
a & b & c \\
x & y & z \\
yz & xz & xy \\
\end{matrix} \right)\]
Thus, we got
\[\left( \begin{matrix}
ax & by & cz \\
{{x}^{2}} & {{y}^{2}} & {{z}^{2}} \\
1 & 1 & 1 \\
\end{matrix} \right)=\left( \begin{matrix}
a & b & c \\
x & y & z \\
yz & xz & xy \\
\end{matrix} \right)\]
This is the required solution of the question.
Thus, we have the correct answer as (a)
Note: Always remember that doing calculations where we are multiplying xyz or any other terms to the matrix or to one column or one row of the matrix does not change the value of the matrix because these all come under the properties of matrices and determinants. The point of error would be multiplying any term to all rows and columns simultaneously at one time which would be wrong, arriving at the incorrect solution.
Complete step-by-step answer:
We have to find the value of \[\left( \begin{matrix}
ax & by & cz \\
{{x}^{2}} & {{y}^{2}} & {{z}^{2}} \\
1 & 1 & 1 \\
\end{matrix} \right)\].
Taking x common from Column 1- C1, y common from Column2-C2 and z common from Column 3-C3 from the above given matrix we have,
\[\left( \begin{matrix}
ax & by & cz \\
{{x}^{2}} & {{y}^{2}} & {{z}^{2}} \\
1 & 1 & 1 \\
\end{matrix} \right)=xyz\left( \begin{matrix}
a & b & c \\
x & y & z \\
\dfrac{1}{x} & \dfrac{1}{y} & \dfrac{1}{z} \\
\end{matrix} \right)\]
We need to make necessary arrangements to eliminate the xyz part which is common on the right hand side matrix. To do it we multiply xyz inside only with R3, that is the third row, we get
\[\left( \begin{matrix}
ax & by & cz \\
{{x}^{2}} & {{y}^{2}} & {{z}^{2}} \\
1 & 1 & 1 \\
\end{matrix} \right)=\left( \begin{matrix}
a & b & c \\
x & y & z \\
\dfrac{xyz}{x} & \dfrac{xyz}{y} & \dfrac{xyz}{z} \\
\end{matrix} \right)\]
Now we solve the right-hand side of the obtained equation by cancelling x obtained at the position (3,1), i.e. third row and first column , by cancelling y at the position (3,2) i.e. third row second column and by cancelling z at the position (3,3) i.e. third row and third column we get,
\[\left( \begin{matrix}
ax & by & cz \\
{{x}^{2}} & {{y}^{2}} & {{z}^{2}} \\
1 & 1 & 1 \\
\end{matrix} \right)=\left( \begin{matrix}
a & b & c \\
x & y & z \\
yz & xz & xy \\
\end{matrix} \right)\]
Thus, we got
\[\left( \begin{matrix}
ax & by & cz \\
{{x}^{2}} & {{y}^{2}} & {{z}^{2}} \\
1 & 1 & 1 \\
\end{matrix} \right)=\left( \begin{matrix}
a & b & c \\
x & y & z \\
yz & xz & xy \\
\end{matrix} \right)\]
This is the required solution of the question.
Thus, we have the correct answer as (a)
Note: Always remember that doing calculations where we are multiplying xyz or any other terms to the matrix or to one column or one row of the matrix does not change the value of the matrix because these all come under the properties of matrices and determinants. The point of error would be multiplying any term to all rows and columns simultaneously at one time which would be wrong, arriving at the incorrect solution.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

