
Find the value of $\dfrac{{\cos {{30}^o}\tan {{60}^o} + \sin {{60}^o}\cos {{60}^o}}}{{\cos ec{{30}^o}\sec {{60}^o} - \cos ec{{60}^o}\cot {{30}^o}}}$
Answer
579.3k+ views
Hint: In this particular question use the direct values of standard angles which is given as $\cos {30^o} = \dfrac{{\sqrt 3 }}{2}$,$\cos {60^o} = \dfrac{1}{2}$, $\tan {60^o} = \sqrt 3 $, $\tan {30^o} = \dfrac{1}{{\sqrt 3 }}$, $\sin {60^o} = \dfrac{{\sqrt 3 }}{2}$, and $\sin {30^o} = \dfrac{1}{2}$, and also use the concept that cosec x = (1/sin x), sec x = (1/cos x), cot x = (1/cot x) so use these properties to reach the solution of the question.
Complete step-by-step answer:
Given trigonometric equation
$\dfrac{{\cos {{30}^o}\tan {{60}^o} + \sin {{60}^o}\cos {{60}^o}}}{{\cos ec{{30}^o}\sec {{60}^o} - \cos ec{{60}^o}\cot {{30}^o}}}$
So we have to find out the value of the above equation.
As we all know that cosec x = (1/sin x), sec x = (1/cos x), cot x = (1/cot x) so use these properties in the above equation we have,
\[ \Rightarrow \dfrac{{\cos {{30}^o}\tan {{60}^o} + \sin {{60}^o}\cos {{60}^o}}}{{\dfrac{1}{{\sin {{30}^o}}}\dfrac{1}{{\cos {{60}^o}}} - \dfrac{1}{{\sin {{60}^o}}}\dfrac{1}{{\tan {{30}^o}}}}}\]
Now use the standard values of standard angles which is given as,
$\cos {30^o} = \dfrac{{\sqrt 3 }}{2}$,$\cos {60^o} = \dfrac{1}{2}$, $\tan {60^o} = \sqrt 3 $, $\tan {30^o} = \dfrac{1}{{\sqrt 3 }}$, $\sin {60^o} = \dfrac{{\sqrt 3 }}{2}$, and $\sin {30^o} = \dfrac{1}{2}$ so substitute these values in the above equation we have,
\[ \Rightarrow \dfrac{{\dfrac{{\sqrt 3 }}{2}\left( {\sqrt 3 } \right) + \dfrac{{\sqrt 3 }}{2}\left( {\dfrac{1}{2}} \right)}}{{\left( {\dfrac{1}{{\dfrac{1}{2}}}} \right)\left( {\dfrac{1}{{\dfrac{1}{2}}}} \right) - \left( {\dfrac{1}{{\dfrac{{\sqrt 3 }}{2}}}} \right)\left( {\dfrac{1}{{\dfrac{1}{{\sqrt 3 }}}}} \right)}}\]
Now simplify the above equation we have,
\[ \Rightarrow \dfrac{{\dfrac{{\sqrt 3 }}{2}\left( {\sqrt 3 } \right) + \dfrac{{\sqrt 3 }}{2}\left( {\dfrac{1}{2}} \right)}}{{\left( 2 \right)\left( 2 \right) - \left( {\dfrac{2}{{\sqrt 3 }}} \right)\left( {\sqrt 3 } \right)}}\]
\[ \Rightarrow \dfrac{{\dfrac{3}{2} + \dfrac{{\sqrt 3 }}{4}}}{{4 - 2}} = \dfrac{{\dfrac{{6 + \sqrt 3 }}{4}}}{2} = \dfrac{{6 + \sqrt 3 }}{8}\]
So this is the required answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the all the standard values of standard angles which are all stated above, these values is the key to the solution so directly substitute these values in the given equation after converting the given equation in terms of sine, cosine and tan as above we will get the required answer.
Complete step-by-step answer:
Given trigonometric equation
$\dfrac{{\cos {{30}^o}\tan {{60}^o} + \sin {{60}^o}\cos {{60}^o}}}{{\cos ec{{30}^o}\sec {{60}^o} - \cos ec{{60}^o}\cot {{30}^o}}}$
So we have to find out the value of the above equation.
As we all know that cosec x = (1/sin x), sec x = (1/cos x), cot x = (1/cot x) so use these properties in the above equation we have,
\[ \Rightarrow \dfrac{{\cos {{30}^o}\tan {{60}^o} + \sin {{60}^o}\cos {{60}^o}}}{{\dfrac{1}{{\sin {{30}^o}}}\dfrac{1}{{\cos {{60}^o}}} - \dfrac{1}{{\sin {{60}^o}}}\dfrac{1}{{\tan {{30}^o}}}}}\]
Now use the standard values of standard angles which is given as,
$\cos {30^o} = \dfrac{{\sqrt 3 }}{2}$,$\cos {60^o} = \dfrac{1}{2}$, $\tan {60^o} = \sqrt 3 $, $\tan {30^o} = \dfrac{1}{{\sqrt 3 }}$, $\sin {60^o} = \dfrac{{\sqrt 3 }}{2}$, and $\sin {30^o} = \dfrac{1}{2}$ so substitute these values in the above equation we have,
\[ \Rightarrow \dfrac{{\dfrac{{\sqrt 3 }}{2}\left( {\sqrt 3 } \right) + \dfrac{{\sqrt 3 }}{2}\left( {\dfrac{1}{2}} \right)}}{{\left( {\dfrac{1}{{\dfrac{1}{2}}}} \right)\left( {\dfrac{1}{{\dfrac{1}{2}}}} \right) - \left( {\dfrac{1}{{\dfrac{{\sqrt 3 }}{2}}}} \right)\left( {\dfrac{1}{{\dfrac{1}{{\sqrt 3 }}}}} \right)}}\]
Now simplify the above equation we have,
\[ \Rightarrow \dfrac{{\dfrac{{\sqrt 3 }}{2}\left( {\sqrt 3 } \right) + \dfrac{{\sqrt 3 }}{2}\left( {\dfrac{1}{2}} \right)}}{{\left( 2 \right)\left( 2 \right) - \left( {\dfrac{2}{{\sqrt 3 }}} \right)\left( {\sqrt 3 } \right)}}\]
\[ \Rightarrow \dfrac{{\dfrac{3}{2} + \dfrac{{\sqrt 3 }}{4}}}{{4 - 2}} = \dfrac{{\dfrac{{6 + \sqrt 3 }}{4}}}{2} = \dfrac{{6 + \sqrt 3 }}{8}\]
So this is the required answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the all the standard values of standard angles which are all stated above, these values is the key to the solution so directly substitute these values in the given equation after converting the given equation in terms of sine, cosine and tan as above we will get the required answer.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

